Human cerebral malaria and the blood-brain barrier

被引:180
作者
Medana, Isabelle M.
Turner, Gareth D. H.
机构
[1] Univ Oxford, Nuffield Dept Clin Lab Sci, Malaria Res Grp, Oxford OX3 9DU, England
[2] John Radcliffe Hosp, Dept Cellular Pathol, Oxford OX3 9DU, England
基金
英国惠康基金;
关键词
malaria; Plasmodium falciparum; pathophysiology; pathology; blood-brain barrier; endothelium;
D O I
10.1016/j.ijpara.2006.02.004
中图分类号
R38 [医学寄生虫学]; Q [生物科学];
学科分类号
07 ; 0710 ; 09 ; 100103 ;
摘要
Malaria represents a continuing and major global health challenge and our understanding of how the Plasmodium parasite causes severe disease and death remains poor. One serious complication of the infection is cerebral malaria, a clinically complex syndrome of coma and potentially reversible encephalopathy, associated with a high mortality rate and increasingly recognised long-term sequelae in survivors. Research into the pathophysiology of cerebral malaria, using a combination of clinical and pathological studies, animal models and in vitro cell culture work, has focussed attention on the blood-brain barrier (BBB). This represents the key interface between the brain parenchyma and the parasite, which develops within an infected red cell but remains inside the vascular space. Studies of BBB function in cerebral malaria have provided some evidence for parasite-induced changes secondary to sequestration of parasitised red blood cells and host leukocytes within the cerebral microvasculature, such as redistribution of endothelial cell intercellular junction proteins and intracellular signaling. However, the evidence for a generalised increase in BBB permeability, leading to cerebral oedema, is conflicting. As well as direct cell adhesion-dependent effects, local adhesion-independent effects may activate and damage cerebral endothelial cells and perivascular cells, such as decreased blood flow, hypoxia or the effects of parasite toxins such as pigment. Finally, a number of systemic mechanisms could influence the BBB during malaria, such as the metabolic and inflammatory complications of severe disease acting 'at a distance'. This review will summarise evidence for these mechanisms from human studies of cerebral malaria and discuss the possible role for BBB dysfunction in this complex and challenging disease. (c) 2006 Australian Society for Parasitology Inc. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:555 / 568
页数:14
相关论文
共 115 条
[21]   ROLLING AND STATIONARY CYTOADHESION OF RED-BLOOD-CELLS PARASITIZED BY PLASMODIUM-FALCIPARUM - SEPARATE ROLES FOR ICAM-1, CD36 AND THROMBOSPONDIN [J].
COOKE, BM ;
BERENDT, AR ;
CRAIG, AG ;
MACGREGOR, J ;
NEWBOLD, CI ;
NASH, GB .
BRITISH JOURNAL OF HAEMATOLOGY, 1994, 87 (01) :162-170
[22]  
Cordoliani YS, 1998, AM J NEURORADIOL, V19, P871
[23]   Molecules on the surface of the Plasmodium falciparum infected erythrocyte and their role in malaria pathogenesis and immune evasion [J].
Craig, A ;
Scherf, A .
MOLECULAR AND BIOCHEMICAL PARASITOLOGY, 2001, 115 (02) :129-143
[24]   Electroencephalographic and clinical features of cerebral malaria [J].
Crawley, J ;
Smith, S ;
Muthinji, P ;
Marsh, K ;
Kirkham, F .
ARCHIVES OF DISEASE IN CHILDHOOD, 2001, 84 (03) :247-253
[25]   MEASURES OF CAPILLARY-PERMEABILITY IN ACUTE FALCIPARUM-MALARIA - RELATION TO SEVERITY OF INFECTION AND TREATMENT [J].
DAVIS, TME ;
SUPUTTAMONGKOL, Y ;
SPENCER, JL ;
FORD, S ;
CHIENKUL, N ;
SCHULENBURG, WE ;
WHITE, NJ .
CLINICAL INFECTIOUS DISEASES, 1992, 15 (02) :256-266
[26]   The pathophysiologic and prognostic significance of acidosis in severe adult malaria [J].
Day, NPJ ;
Phu, NH ;
Mai, NTH ;
Chau, TTH ;
Loc, PP ;
Van Chuong, L ;
Sinh, DX ;
Holloway, P ;
Hien, TT ;
White, NJ .
CRITICAL CARE MEDICINE, 2000, 28 (06) :1833-1840
[27]   Differential cellular accumulation of transforming growth factor-β1, -β2, and -β3 in brains of patients who died with cerebral malaria [J].
Deininger, MH ;
Kremsner, PG ;
Meyermann, R ;
Schluesener, HJ .
JOURNAL OF INFECTIOUS DISEASES, 2000, 181 (06) :2111-2115
[28]   Angiogenic proteins in brains of patients who died with cerebral malaria [J].
Deininger, MH ;
Winkler, S ;
Kremsner, PG ;
Meyermann, R ;
Schluesener, HJ .
JOURNAL OF NEUROIMMUNOLOGY, 2003, 142 (1-2) :101-111
[29]  
Deininger MH, 2002, EUR CYTOKINE NETW, V13, P173
[30]   Cerebrospinal fluid studies in children with cerebral malaria: An excitotoxic mechanism? [J].
Dobbie, M ;
Crawley, J ;
Waruiru, C ;
Marsh, K ;
Surtees, R .
AMERICAN JOURNAL OF TROPICAL MEDICINE AND HYGIENE, 2000, 62 (02) :284-290