Clarification of pathway-specific inhibition by Fourier transform ion cyclotron resonance/mass spectrometry-based metabolic phenotyping studies

被引:79
作者
Oikawa, Akira
Nakamura, Yukiko
Ogura, Tomonori
Kimura, Atsuko
Suzuki, Hideyuki
Sakurai, Nozomu
Shinbo, Yoko
Shibata, Daisuke
Kanaya, Shigehiko
Ohta, Daisaku [1 ]
机构
[1] Osaka Prefecture Univ, Grad Sch Life & Environm Sci, Sakai, Osaka 5998531, Japan
[2] Res Assoc Biotechnol, Tokyo 1050003, Japan
[3] Nara Inst Sci & Technol, Dept Bioinformat & Genom, Ikoma 6300192, Japan
[4] Ehime Womens Coll, Uwajima 7980025, Japan
[5] Kazusa DNA Res Inst, Kisarazu 2920818, Japan
关键词
D O I
10.1104/pp.106.080317
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
We have developed a metabolic profiling scheme based on direct-infusion Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR/MS). The scheme consists of: (1) reproducible data collection under optimized FT-ICR/MS analytical conditions; (2) automatic mass-error correction and multivariate analyses for metabolome characterization using a newly developed metabolomics tool (DMASS software); (3) identification of marker metabolite candidates by searching a species-metabolite relationship database, KNApSAcK; and (4) structural analyses by an MS/MS method. The scheme was applied to metabolic phenotyping of Arabidopsis (Arabidopsis thaliana) seedlings treated with different herbicidal chemical classes for pathway-specific inhibitions. Arabidopsis extracts were directly infused into an electrospray ionization source on an FT-ICR/MS system. Acquired metabolomics data were comprised of mass-to-charge ratio values with ion intensity information subjected to principal component analysis, and metabolic phenotypes from the herbicide treatments were clearly differentiated from those of the herbicide-free treatment. From each herbicide treatment, candidate metabolites representing such metabolic phenotypes were found through the KNApSAcK database search. The database search and MS/MS analyses suggested dose-dependent accumulation patterns of specific metabolites including several flavonoid glycosides. The metabolic phenotyping scheme on the basis of FT-ICR/MS coupled with the DMASS program is discussed as a general tool for high throughput metabolic phenotyping studies.
引用
收藏
页码:398 / 413
页数:16
相关论文
共 42 条
[1]   Informatics for unveiling hidden genome signatures [J].
Abe, T ;
Kanaya, S ;
Kinouchi, M ;
Ichiba, Y ;
Kozuki, T ;
Ikemura, T .
GENOME RESEARCH, 2003, 13 (04) :693-702
[2]  
Aharoni Asaph, 2002, OMICS A Journal of Integrative Biology, V6, P217, DOI 10.1089/15362310260256882
[3]   Automated mode-of-action detection by metabolic profiling [J].
Aranìbar, N ;
Singh, BK ;
Stockton, GW ;
Ott, KH .
BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 2001, 286 (01) :150-155
[4]   gurke and pasticcino3 mutants affected in embryo development are impaired in acetyl-CoA carboxylase [J].
Baud, S ;
Bellec, Y ;
Miquel, M ;
Bellini, C ;
Caboche, M ;
Lepiniec, L ;
Faure, JD ;
Rochat, C .
EMBO REPORTS, 2004, 5 (05) :515-520
[5]   Multifunctional acetyl-CoA carboxylase 1 is essential for very long chain fatty acid elongation and embryo development in Arabidopsis [J].
Baud, S ;
Guyon, V ;
Kronenberger, J ;
Wuillème, S ;
Miquel, M ;
Caboche, M ;
Lepiniec, L ;
Rochat, C .
PLANT JOURNAL, 2003, 33 (01) :75-86
[6]   Metabolic discrimination of Catharanthus roseus leaves infected by phytoplasma using 1H-NMR spectroscopy and multivariate data analysis [J].
Choi, YH ;
Tapias, EC ;
Kim, HK ;
Lefeber, AWM ;
Erkelens, C ;
Verhoeven, JTJ ;
Brzin, J ;
Zel, J ;
Verpoorte, R .
PLANT PHYSIOLOGY, 2004, 135 (04) :2398-2410
[7]   KINETICS OF THE 2 FORMS OF ACETYL-COA CARBOXYLASE FROM PISUM-SATIVUM - CORRELATION OF THE SUBSTRATE-SPECIFICITY OF THE ENZYMES AND SENSITIVITY TOWARDS ARYLOXYPHENOXYPROPIONATE HERBICIDES [J].
DEHAYE, L ;
ALBAN, C ;
JOB, C ;
DOUCE, R ;
JOB, D .
EUROPEAN JOURNAL OF BIOCHEMISTRY, 1994, 225 (03) :1113-1123
[8]   Molecular bases for sensitivity to acetyl-coenzyme a carboxylase inhibitors in black-grass [J].
Délye, C ;
Zhang, XQ ;
Michel, S ;
Matéjicek, A ;
Powles, SB .
PLANT PHYSIOLOGY, 2005, 137 (03) :794-806
[9]   An isoleucine residue within the carboxyl-transferase domain of multidomain acetyl-coenzyme A carboxylase is a major determinant of sensitivity to aryloxyphenoxypropionate but not to cyclohexanedione inhibitors [J].
Délye, C ;
Zhang, XQ ;
Chalopin, C ;
Michel, S ;
Powles, SB .
PLANT PHYSIOLOGY, 2003, 132 (03) :1716-1723
[10]   Innovation - Metabolite profiling: from diagnostics to systems biology [J].
Fernie, AR ;
Trethewey, RN ;
Krotzky, AJ ;
Willmitzer, L .
NATURE REVIEWS MOLECULAR CELL BIOLOGY, 2004, 5 (09) :763-769