Effect of PTFE contents in the gas diffusion media on the performance of PEMFC

被引:329
作者
Park, GG [1 ]
Sohn, YJ [1 ]
Yang, TH [1 ]
Yoon, YG [1 ]
Lee, WY [1 ]
Kim, CS [1 ]
机构
[1] Korea Inst Energy Res, Fuel Cell Res Ctr, Taejon 305343, South Korea
关键词
PEMFC; gas diffusion layer; PTFE; capillary; flooding;
D O I
10.1016/j.jpowsour.2003.12.037
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The behavior of water in the gas diffusion layers of a polymer electrolyte membrane fuel cell (PEMFC) was investigated analytically. To understand the water transportation phenomena systematically, the gas diffusion layers were divided into two parts. One is the gas diffusion medium (GDM) and the other is micro-layer (ML). In this work, the GDM with different PTFE contents was intensively investigated under various single cell operation conditions. I-V performance curves of single cells were compared and analyzed with respect to water transportation in the GDM. The increased PTFE contents disturb the ejection of liquid-phase water from the electrodes to the flow channels via the GDM, especially at higher relative humidity conditions. I-V performance curves in this work can also be interpreted as an evidence that capillary force in the GDM is not the main driving force for the water transportation. Other forces, for example shear force of fluid and water evaporation etc. are more dominant driving forces, at least with in the GDM itself. This is because of the relatively larger pore diameter of the GDM compared to that of electrodes and ML. When a ML was used in the GDM, the I-V performance of fuel cell became more stabilized as well as enhanced. In regard to water management, the ML might have important roles as buffer zone which prevent serious drying and flooding of the electrode. So, when the entire gas diffusion part is designed, the capillary-force-driven water movement and the shear-force- or vaporization-driven water transportation should be considered carefully for both the ML and the GDM structures. (C) 2004 Elsevier B.V. All rights reserved.
引用
收藏
页码:182 / 187
页数:6
相关论文
共 13 条
[1]   Examination of the influence of PTFE coating on the properties of carbon paper in polymer electrolyte fuel cells [J].
Bevers, D ;
Rogers, R ;
vonBradke, M .
JOURNAL OF POWER SOURCES, 1996, 63 (02) :193-201
[2]   Influence of heat transfer on gas and water transport in fuel cells [J].
Djilali, N ;
Lu, DM .
INTERNATIONAL JOURNAL OF THERMAL SCIENCES, 2002, 41 (01) :29-40
[3]   Recent progress in performance improvement of the proton exchange membrane fuel cell (PEMFC) [J].
Gamburzev, S ;
Appleby, AJ .
JOURNAL OF POWER SOURCES, 2002, 107 (01) :5-12
[4]   The effects of capillary force and gravity on the interfacial profile in a reservoir fracture or pore [J].
Gu, YG ;
Yang, CD .
JOURNAL OF PETROLEUM SCIENCE AND ENGINEERING, 2003, 40 (1-2) :77-87
[5]   Titanium sinter as gas diffusion backing in PEMFC [J].
Hottinen, T ;
Mikkola, M ;
Mennola, T ;
Lund, P .
JOURNAL OF POWER SOURCES, 2003, 118 (1-2) :183-188
[6]   Effect of diffusion-layer morphology on the performance of polymer electrolyte fuel cells operating at atmospheric pressure [J].
Jordan, LR ;
Shukla, AK ;
Behrsing, T ;
Avery, NR ;
Muddle, BC ;
Forsyth, M .
JOURNAL OF APPLIED ELECTROCHEMISTRY, 2000, 30 (06) :641-646
[7]   Effective diffusivity and water-saturation distribution in single- and two-layer PEMFC diffusion medium [J].
Nam, JH ;
Kaviany, M .
INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2003, 46 (24) :4595-4611
[8]   A two-dimensional, two-phase, multicomponent, transient model for the cathode of a proton exchange membrane fuel cell using conventional gas distributors [J].
Natarajan, D ;
Nguyen, TV .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2001, 148 (12) :A1324-A1335
[9]   Pore size effect of the DMFC catalyst supported on porous materials [J].
Park, GG ;
Yang, TH ;
Yoon, YG ;
Lee, WY ;
Kim, CS .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2003, 28 (06) :645-650
[10]   Effects of the diffusion layer characteristics on the performance of polymer electrolyte fuel cell electrodes [J].
Passalacqua, E ;
Squadrito, G ;
Lufrano, F ;
Patti, A ;
Giorgi, L .
JOURNAL OF APPLIED ELECTROCHEMISTRY, 2001, 31 (04) :449-454