Characterization of a root-specific Arabidopsis terpene synthase responsible for the formation of the volatile monoterpene 1,8-cineole

被引:176
作者
Chen, F
Ro, DK
Petri, J
Gershenzon, J
Bohlmann, J
Pichersky, E
Tholl, D [1 ]
机构
[1] Univ Michigan, Dept Mol Cellular & Dev Biol, Ann Arbor, MI 48109 USA
[2] Max Planck Inst Chem Ecol, D-07745 Jena, Germany
[3] Univ British Columbia, Biotechnol Lab, Vancouver, BC V6T 1Z3, Canada
关键词
D O I
10.1104/pp.104.044388
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Arabidopsis is emerging as a model system to study the biochemistry, biological functions, and evolution of plant terpene secondary metabolism. It was previously shown that the Arabidopsis genome contains over 30 genes potentially encoding terpene synthases (TPSs). Here we report the characterization of a monoterpene synthase encoded by two identical, closely linked genes, At3g25820 and At3g25830. Transcripts of these genes were detected almost exclusively in roots. An At3g25820/At3g25830 cDNA was expressed in Escherichia coli, and the protein thus produced was shown to catalyze the formation of 10 volatile monoterpenes from geranyl diphosphate, with 1,8-cineole predominating. This protein was therefore designated AtTPS-Cin. The purified recombinant AtTPS-Cin displayed similar biochemical properties to other known monoterpene synthases, except for a relatively tow K-m value for geranyl diphosphate of 0.2 muM. At3g25820/At3g25830 promoter activity, measured with a beta-glucuronidase (GUS) reporter gene, was primarily found in the epidermis, cortex, and stele of mature primary and lateral roots, but not in the root meristem or the elongation zone. Although the products of AtTPS-Cin were not detected by direct extraction of plant tissue, the recent report of 1,8-cineole as an Arabidopsis root volatile (Steeghs M, Bais HP, de Gouw J, Goldan P, Kuster W, Northway M, Fall R, Vivanco JM [2004] Plant Physiol 135: 47-58) suggests that the enzyme products may be released into the rhizosphere rather than accumulated. Among Arabidopsis TPSs, AtTPS-Cin is most similar to the TPS encoded by At3g25810, a closely linked gene previously shown to be exclusively expressed in flowers. At3g25810 TPS catalyzes the formation of a set of monoterpenes that is very similar to those produced by AtTPS-Cin, but its major products are myrcene and (E)-beta-ocimene, and it does not form 1,8-cineole. These data demonstrate that divergence of organ expression pattern and product specificity are ongoing processes within the Arabidopsis TPS family.
引用
收藏
页码:1956 / 1966
页数:11
相关论文
共 55 条
[1]   Forest tent caterpillars (Malacosoma disstria) induce local and systemic diurnal emissions of terpenoid volatiles in hybrid poplar (Populus trichocarpa x deltoides):: cDNA cloning, functional characterization, and patterns of gene expression of (-)-germacrene D synthase, PtdTPS1 [J].
Arimura, G ;
Huber, DPW ;
Bohlmann, J .
PLANT JOURNAL, 2004, 37 (04) :603-616
[2]   Genomic analysis of the terpenoid synthase (AtTPS) gene family of Arabidopsis thaliana [J].
Aubourg, S ;
Lecharny, A ;
Bohlmann, J .
MOLECULAR GENETICS AND GENOMICS, 2002, 267 (06) :730-745
[3]   How plants communicate using the underground information superhighway [J].
Bais, HP ;
Park, SW ;
Weir, TL ;
Callaway, RM ;
Vivanco, JM .
TRENDS IN PLANT SCIENCE, 2004, 9 (01) :26-32
[4]   Allelopathy and exotic plant invasion: From molecules and genes to species interactions [J].
Bais, HP ;
Vepachedu, R ;
Gilroy, S ;
Callaway, RM ;
Vivanco, JM .
SCIENCE, 2003, 301 (5638) :1377-1380
[5]  
BECHTOLD N, 1993, CR ACAD SCI III-VIE, V316, P1194
[6]   Embedding thin plant specimens for oriented sectioning [J].
Beeckman, T ;
Viane, R .
BIOTECHNIC & HISTOCHEMISTRY, 2000, 75 (01) :23-26
[7]   A gene expression map of the Arabidopsis root [J].
Birnbaum, K ;
Shasha, DE ;
Wang, JY ;
Jung, JW ;
Lambert, GM ;
Galbraith, DW ;
Benfey, PN .
SCIENCE, 2003, 302 (5652) :1956-1960
[8]  
Blazquez MA, 1997, DEVELOPMENT, V124, P3835
[9]   Terpenoid secondary metabolism in Arabidopsis thaliana:: cDNA cloning, characterization, and functional expression of a myrcene/(E)-β-ocimene synthase [J].
Bohlmann, J ;
Martin, D ;
Oldham, NJ ;
Gershenzon, J .
ARCHIVES OF BIOCHEMISTRY AND BIOPHYSICS, 2000, 375 (02) :261-269
[10]   Plant terpenoid synthases: Molecular biology and phylogenetic analysis [J].
Bohlmann, J ;
Meyer-Gauen, G ;
Croteau, R .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1998, 95 (08) :4126-4133