Scalar curvature, metric degenerations and the static vacuum Einstein equations on 3-manifolds, I

被引:46
作者
Anderson, MT [1 ]
机构
[1] SUNY Stony Brook, Dept Math, Stony Brook, NY 11794 USA
基金
美国国家科学基金会;
关键词
D O I
10.1007/s000390050104
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
[No abstract available]
引用
收藏
页码:855 / 967
页数:113
相关论文
共 48 条
[11]  
AVILES P, 1988, J DIFFER GEOM, V27, P225
[12]  
Berger M., 1969, J. Differential Geometry, V3, P379
[13]  
BESSE A, 1987, REGEBNISSE MATH, V10
[14]  
BOURGUIGNON JP, 1975, COMPOS MATH, V30, P1
[15]   NONEXISTENCE OF MULTIPLE BLACK-HOLES IN ASYMPTOTICALLY EUCLIDEAN STATIC VACUUM SPACE-TIME [J].
BUNTING, GL ;
MASOODULALAM, AKM .
GENERAL RELATIVITY AND GRAVITATION, 1987, 19 (02) :147-154
[16]   FINITENESS THEOREMS FOR RIEMANNIAN MANIFOLDS [J].
CHEEGER, J .
AMERICAN JOURNAL OF MATHEMATICS, 1970, 92 (01) :61-&
[17]  
CHEEGER J, 1986, J DIFFER GEOM, V23, P309
[18]  
CHEEGER J, 1990, J DIFFER GEOM, V32, P269
[19]  
Cheng S. Y., 1980, Geometry of the Laplace operator (Proc. Sympos. Pure Math., Univ. Hawaii, Honolulu, Hawaii, 1979), VXXXVI, P147
[20]   DIFFERENTIAL EQUATIONS ON RIEMANNIAN MANIFOLDS AND THEIR GEOMETRIC APPLICATIONS [J].
CHENG, SY ;
YAU, ST .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1975, 28 (03) :333-354