Three-dimensional "Mercedes-Benz" model for water

被引:54
作者
Dias, Cristiano L. [1 ]
Ala-Nissila, Tapio [2 ,3 ,4 ]
Grant, Martin [5 ]
Karttunen, Mikko [1 ]
机构
[1] Univ Western Ontario, Dept Appl Math, London, ON N6A 5B7, Canada
[2] Brown Univ, Dept Phys, Providence, RI 02912 USA
[3] Helsinki Univ Technol, Dept Appl Phys, FI-02015 Tkk Espoo, Finland
[4] Helsinki Univ Technol, COMP Ctr Excellence, FI-02015 Tkk Espoo, Finland
[5] McGill Univ, Dept Phys, Montreal, PQ H3A 2T8, Canada
基金
加拿大自然科学与工程研究理事会; 芬兰科学院;
关键词
freezing; hydrogen bonds; Lennard-Jones potential; quasimolecules; specific heat; thermal expansion; van der Waals forces; water; RADIAL-DISTRIBUTION FUNCTIONS; LIQUID WATER; STATISTICAL MECHANICS; POTENTIAL FUNCTIONS; SIMULATIONS; DENSITY; HYDROGEN; SYSTEMS; ICE; US;
D O I
10.1063/1.3183935
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
In this paper we introduce a three-dimensional version of the Mercedes-Benz model to describe water molecules. In this model van der Waals interactions and hydrogen bonds are given explicitly through a Lennard-Jones potential and a Gaussian orientation-dependent terms, respectively. At low temperature the model freezes forming Ice-I and it reproduces the main peaks of the experimental radial distribution function of water. In addition to these structural properties, the model also captures the thermodynamical anomalies of water: The anomalous density profile, the negative thermal expansivity, the large heat capacity, and the minimum in the isothermal compressibility.
引用
收藏
页数:7
相关论文
共 38 条
[1]   Frustration and anomalous behavior in the Bell-Lavis model of liquid water [J].
Alves Barbosa, Marco Aurelio ;
Henriques, Vera Bohomoletz .
PHYSICAL REVIEW E, 2008, 77 (05)
[2]   Classical interaction model for the water molecule [J].
Baranyai, Andras ;
Bartok, Albert .
JOURNAL OF CHEMICAL PHYSICS, 2007, 126 (18)
[3]   Mercedes Benz model of neutral amino-acid side chains [J].
Becker, Jean-Paul ;
Collet, Olivier .
JOURNAL OF MOLECULAR STRUCTURE-THEOCHEM, 2006, 774 (1-3) :23-28
[4]   STATISTICAL MECHANICS OF WATER - LATTICE MODEL WITH DIRECTED BONDING [J].
BELL, GM .
JOURNAL OF PHYSICS PART C SOLID STATE PHYSICS, 1972, 5 (09) :889-&
[5]  
Ben-Naim A., 1974, WATER AQUEOUS SOLUTI
[7]  
Berendsen H. J. C., 1981, Intermol. Forces, P331
[8]   A theory of water and ionic solution, with particular reference to hydrogen and hydroxyl ions [J].
Bernal, JD ;
Fowler, RH .
JOURNAL OF CHEMICAL PHYSICS, 1933, 1 (08) :515-548
[9]  
Bizjak A, 2007, ACTA CHIM SLOV, V54, P532
[10]  
Buzano C, 2004, PHYS REV E, V69, DOI 10.1103/PhysRevE.69.061502