Comparison of formats for the development of fiber-optic biosensors utilizing sol-gel derived materials entrapping fluorescently-labelled protein

被引:27
作者
Flora, K [1 ]
Brennan, JD [1 ]
机构
[1] McMaster Univ, Dept Chem, Hamilton, ON L8S 4M1, Canada
关键词
D O I
10.1039/a906308k
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
The development of fiber-optic biosensors requires that a biorecognition element and a fluorescent reporter group be immobilized at or near the surface of an optical element such as a planar waveguide or optical fiber. In this study, we examined a model biorecognition element-reporter group couple consisting of human serum albumin that was site-selectively labelled at Cys 34 with iodoacetoxy-nitrobenzoxadiazole (HSA-NBD). The labelled protein was encapsulated into sol-gel derived materials that were prepared either as monoliths, as beads that were formed at the distal tip of a fused silica optical fiber, or as thin films that were dipcast along the length of a glass slide or optical fiber. For fiber-based studies, the entrapped protein was excited using a helium-cadmium laser that was launched into a single optical fiber, and emission was separated from the incident radiation using a perforated mirror beam-splitter, and detected using a monochromator-photomultiplier tube assembly. Changes in fluorescence intensity were generated by denaturant-induced conformational changes in the protein or by iodide quenching. The analytical parameters of merit for the different encapsulation formats, including minimum protein loading level, response time and limit-of-detection, were examined, as were factors such as protein accessibility, leaching and photobleaching. Overall, the results indicated that both beads and films were suitable for biosensor development. In both formats, a substantial fraction of the entrapped protein remained accessible, and the entrapped protein retained a large degree of conformational flexibility. Thin films showed the most rapid response times, and provided good detection limits for a model analyte. However, the entrapment of proteins into beads at the distal tip of fibers provided better signal-to-noise and signal-to-background ratios, and required less protein for preparation. Hence, beads appear to be the most viable method for interfacing of proteins to optical fibers.
引用
收藏
页码:1455 / 1462
页数:8
相关论文
共 53 条
[1]   Spectroscopic determination of cholinesterase activity and inhibition in sol-gel media [J].
Akbarian, F ;
Lin, A ;
Dunn, BS ;
Valentine, JS ;
Zink, JI .
JOURNAL OF SOL-GEL SCIENCE AND TECHNOLOGY, 1997, 8 (1-3) :1067-1070
[2]   Optical biosensing of gaseous nitric oxide using spin-coated sol-gel thin films [J].
Aylott, JW ;
Richardson, DJ ;
Russell, DA .
CHEMISTRY OF MATERIALS, 1997, 9 (11) :2261-2263
[3]   Optical biosensing of nitrate ions using a sol-gel immobilized nitrate reductase [J].
Aylott, JW ;
Richardson, DJ ;
Russell, DA .
ANALYST, 1997, 122 (01) :77-80
[4]   SOL-GEL ENCAPSULATION OF METALLOPROTEINS FOR THE DEVELOPMENT OF OPTICAL BIOSENSORS FOR NITROGEN-MONOXIDE AND CARBON-MONOXIDE [J].
BLYTH, DJ ;
AYLOTT, JW ;
RICHARDSON, DJ ;
RUSSELL, DA .
ANALYST, 1995, 120 (11) :2725-2730
[5]   BIOCHEMICALLY ACTIVE SOL-GEL GLASSES - THE TRAPPING OF ENZYMES [J].
BRAUN, S ;
RAPPOPORT, S ;
ZUSMAN, R ;
AVNIR, D ;
OTTOLENGHI, M .
MATERIALS LETTERS, 1990, 10 (1-2) :1-5
[6]   BIOCATALYSIS BY SOL-GEL ENTRAPPED ENZYMES [J].
BRAUN, S ;
SHTELZER, S ;
RAPPOPORT, S ;
AVNIR, D ;
OTTOLENGHI, M .
JOURNAL OF NON-CRYSTALLINE SOLIDS, 1992, 147 :739-743
[7]   Using intrinsic fluorescence to investigate proteins entrapped in sol-gel derived materials [J].
Brennan, JD .
APPLIED SPECTROSCOPY, 1999, 53 (03) :106A-121A
[8]  
BRENNAN JD, 1999, IN PRESS CHEM MAT
[9]  
BRENNAN JD, 1999, IN PRESS J FLUORES
[10]  
BRINKER CJ, 1989, SOL GEL SCI