High temperature transport properties of BaZn2Sn2

被引:4
作者
Aydemir, U. [1 ,2 ]
Zevalkink, A. [3 ]
Bux, S. [3 ]
Snyder, G. J. [1 ]
机构
[1] CALTECH, Dept Mat Sci, Pasadena, CA 91125 USA
[2] Koc Univ, Dept Chem, Istanbul, Turkey
[3] CALTECH, Jet Prop Lab, Thermal Energy Convers Technol Grp, Pasadena, CA USA
基金
美国国家航空航天局;
关键词
Stannides; Zintl phase; Tin-flux; Crystal structure; Electronic transport; Thermal transport; THERMOELECTRIC EFFICIENCY; CRYSTAL-STRUCTURE; ZN-SN; PHASES;
D O I
10.1016/j.jallcom.2014.10.090
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
BaZn2Sn2 (space group P4/nmm, a = 4.7459(5) angstrom, c = 11.330(2) angstrom, Z = 2) crystallizes in the CaBe2Ge2 structure type with a polyanionic framework comprising alternately stacked PbO-like {ZnSn4/4} and anti-PbO-like {SnZn4/4} layers along the c-axis. BaZn2Sn2 samples were obtained by either direct solid state reaction of the elements or from a Sn-flux method in very high yield with very small amount of b-Sn as the secondary phase. The samples were characterized by powder X-ray diffraction (PXRD) and scanning electron microscopy (SEM). The chemical compositions were determined to be off-stoichiometric with Zn/Sn ratio lower than 1.0 and Sn-2 atoms in the crystal structure were found to be either loosely bonded or not bonded which might lead to an incomplete charge balance. Electrical and thermal transport measurements have been performed in the temperature range 300-773 K. BaZn2Sn2 displays the electrical resistivity of a metal (or semimetal) along with very low Seebeck coefficients and relatively high thermal conductivity. (C) 2014 Elsevier B.V. All rights reserved.
引用
收藏
页码:402 / 407
页数:6
相关论文
共 41 条
[1]  
Akselrud L.G., 1993, MAT SCI FORUM, V133-136, P335
[2]  
[Anonymous], Introduction to Thermoelectricity', DOI DOI 10.1007/978-3-642-00716-3
[3]   Measurement of the electrical resistivity and Hall coefficient at high temperatures [J].
Borup, Kasper A. ;
Toberer, Eric S. ;
Zoltan, Leslie D. ;
Nakatsukasa, George ;
Errico, Michael ;
Fleurial, Jean-Pierre ;
Iversen, Bo B. ;
Snyder, G. Jeffrey .
REVIEW OF SCIENTIFIC INSTRUMENTS, 2012, 83 (12)
[4]   Glass-like lattice thermal conductivity and high thermoelectric efficiency in Yb9Mn4.2Sb9 [J].
Bux, Sabah K. ;
Zevalkink, Alexandra ;
Janka, Oliver ;
Uhl, David ;
Kauzlarich, Susan ;
Snyder, Jeffrey G. ;
Fleurial, Jean-Pierre .
JOURNAL OF MATERIALS CHEMISTRY A, 2014, 2 (01) :215-220
[5]   Doping effects on thermoelectric properties in the Mg 2Sn system [J].
Soon-Mok Choi ;
Tae Ho An ;
Won-Seon Seo ;
Chan Park ;
Il-Ho Kim ;
Sun-Uk Kim .
Journal of Electronic Materials, 2012, 41 (6) :1071-1076
[6]   Structural, magnetic, thermal, and electronic transport properties of single-crystal EuPd2Sb2 [J].
Das, S. ;
McFadden, K. ;
Singh, Yogesh ;
Nath, R. ;
Ellern, A. ;
Johnston, D. C. .
PHYSICAL REVIEW B, 2010, 81 (05)
[7]   Enhancement of thermoelectric efficiency in type-VIII clathrate Ba8Ga16Sn30 by Al substitution for Ga [J].
Deng, Shukang ;
Saiga, Yuta ;
Suekuni, Koichiro ;
Takabatake, Toshiro .
JOURNAL OF APPLIED PHYSICS, 2010, 108 (07)
[8]   THERMAL EXPANSION OF TETRAGONAL TIN [J].
DESHPANDE, V ;
SIRDESHMUKH, DB .
ACTA CRYSTALLOGRAPHICA, 1961, 14 (04) :355-&
[9]   Crystal structure and magnetic ordering in dimorphic EuZn2Sn2 [J].
Dhar, S. K. ;
Paulose, P. ;
Kulkarni, R. ;
Manfrinetti, P. ;
Pani, M. ;
Parodi, N. .
SOLID STATE COMMUNICATIONS, 2009, 149 (1-2) :68-72
[10]  
EISENMAN.B, 1972, Z NATURFORSCH PT B, VB 27, P1155