Get real in individual participant data (IPD) meta-analysis: a review of the methodology

被引:215
作者
Debray, Thomas P. A. [1 ,2 ]
Moons, Karel G. M. [1 ,2 ]
van Valkenhoef, Gert [3 ]
Efthimiou, Orestis [4 ]
Hummel, Noemi [5 ]
Groenwold, Rolf H. H. [1 ]
Reitsma, Johannes B. [1 ,2 ]
机构
[1] Univ Med Ctr Utrecht, Julius Ctr Hlth Sci & Primary Care, Utrecht, Netherlands
[2] Univ Med Ctr, Julius Ctr Hlth Sci & Primary Care, Dutch Cochrane Ctr, Utrecht, Netherlands
[3] Univ Groningen, Univ Med Ctr Groningen, Dept Epidemiol, Groningen, Netherlands
[4] Univ Ioannina, Sch Med, Dept Hyg & Epidemiol, GR-45110 Ioannina, Greece
[5] Univ Bern, Inst Social & Prevent Med, Bern, Switzerland
关键词
meta-analysis; IPD; evidence synthesis; review; RCT; non-randomized intervention studies; NRSI; cross-design; PATIENT DATA METAANALYSIS; ZERO-INFLATED POISSON; ADJUSTED INDIRECT COMPARISONS; RANDOM EFFECTS MODELS; CARE DECISION-MAKING; SURVIVAL-DATA; SYSTEMATIC REVIEWS; PROPORTIONAL-HAZARDS; AGGREGATE DATA; MULTIPLE IMPUTATION;
D O I
10.1002/jrsm.1160
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Individual participant data (IPD) meta-analysis is an increasingly used approach for synthesizing and investigating treatment effect estimates. Over the past few years, numerous methods for conducting an IPD meta-analysis (IPD-MA) have been proposed, often making different assumptions and modeling choices while addressing a similar research question. We conducted a literature review to provide an overview of methods for performing an IPD-MA using evidence from clinical trials or non-randomized studies when investigating treatment efficacy. With this review, we aim to assist researchers in choosing the appropriate methods and provide recommendations on their implementation when planning and conducting an IPD-MA. (c) 2015 The Authors. Research Synthesis Methods published by John Wiley & Sons, Ltd.
引用
收藏
页码:293 / 309
页数:17
相关论文
共 124 条
[11]   Combining multiple imputation and meta-analysis with individual participant data [J].
Burgess, Stephen ;
White, Ian R. ;
Resche-Rigon, Matthieu ;
Wood, Angela M. .
STATISTICS IN MEDICINE, 2013, 32 (26) :4499-4514
[12]  
Buyse M, 1996, STAT MED, V15, P2797, DOI 10.1002/(SICI)1097-0258(19961230)15:24<2797::AID-SIM290>3.0.CO
[13]  
2-V
[14]   Systematic reviews using individual patient data: A map for the minefields? [J].
Clarke, M ;
Godwin, J .
ANNALS OF ONCOLOGY, 1998, 9 (08) :827-833
[15]   SYSTEMATIC REVIEWS - OBTAINING DATA FROM RANDOMIZED CONTROLLED TRIALS - HOW MUCH DO WE NEED FOR RELIABLE AND INFORMATIVE METAANALYSES [J].
CLARKE, MJ ;
STEWART, LA .
BRITISH MEDICAL JOURNAL, 1994, 309 (6960) :1007-1010
[16]   Randomized, controlled trials, observational studies, and the hierarchy of research designs. [J].
Concato, J ;
Shah, N ;
Horwitz, RI .
NEW ENGLAND JOURNAL OF MEDICINE, 2000, 342 (25) :1887-1892
[17]   Individual patient data meta-analysis of survival data using Poisson regression models [J].
Crowther, Michael J. ;
Riley, Richard D. ;
Staessen, Jan A. ;
Wang, Jiguang ;
Gueyffier, Francois ;
Lambert, Paul C. .
BMC MEDICAL RESEARCH METHODOLOGY, 2012, 12
[18]   Individual Participant Data Meta-Analysis for a Binary Outcome: One-Stage or Two-Stage? [J].
Debray, Thomas P. A. ;
Moons, Karel G. M. ;
Abo-Zaid, Ghada Mohammed Abdallah ;
Koffijberg, Hendrik ;
Riley, Richard David .
PLOS ONE, 2013, 8 (04)
[19]   Review: A gentle introduction to imputation of missing values [J].
Donders, A. Rogier T. ;
van der Heijden, Geert J. M. G. ;
Stijnen, Theo ;
Moons, Karel G. M. .
JOURNAL OF CLINICAL EPIDEMIOLOGY, 2006, 59 (10) :1087-1091
[20]   Combining individual patient data and aggregate data in mixed treatment comparison meta-analysis: Individual patient data may be beneficial if only for a subset of trials [J].
Donegan, Sarah ;
Williamson, Paula ;
D'Alessandro, Umberto ;
Garner, Paul ;
Smith, Catrin Tudur .
STATISTICS IN MEDICINE, 2013, 32 (06) :914-930