Numerical evolutions of a black hole-neutron star system in full general relativity:: Head-on collision

被引:51
作者
Loeffler, Frank
Rezzolla, Luciano
Ansorg, Marcus
机构
[1] SISSA, Int Sch Adv Studies, I-34014 Trieste, Italy
[2] INFN, I-34014 Trieste, Italy
[3] Albert Einstein Inst, D-14476 Potsdam, Germany
[4] Max Planck Inst Gravitat Phys, D-14476 Potsdam, Germany
[5] Louisiana State Univ, Dept Phys, Baton Rouge, LA 70803 USA
关键词
D O I
10.1103/PhysRevD.74.104018
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We present the first simulations in full general relativity of the head-on collision between a neutron star and a black hole of comparable mass. These simulations are performed through the solution of the Einstein equations combined with an accurate solution of the relativistic hydrodynamics equations via high-resolution shock-capturing techniques. The initial data is obtained by following the York-Lichnerowicz conformal decomposition with the assumption of time symmetry. Unlike other relativistic studies of such systems, no limitation is set for the mass ratio between the black hole and the neutron star, nor on the position of the black hole, whose apparent horizon is entirely contained within the computational domain. The latter extends over similar to 400M and is covered with six levels of fixed mesh refinement. Concentrating on a prototypical binary system with mass ratio similar to 6, we find that although a tidal deformation is evident the neutron star is accreted promptly and entirely into the black hole. While the collision is completed before similar to 300M, the evolution is carried over up to similar to 1700M, thus providing time for the extraction of the gravitational-wave signal produced and allowing for a first estimate of the radiative efficiency of processes of this type.
引用
收藏
页数:16
相关论文
共 72 条
[1]   Gravitational wave extraction and outer boundary conditions by perturbative matching [J].
Abrahams, AM ;
Rezzolla, L ;
Rupright, ME ;
Anderson, A ;
Anninos, P ;
Baumgarte, TW ;
Bishop, NT ;
Brandt, SR ;
Browne, JC ;
Camarda, K ;
Choptuik, MW ;
Cook, GB ;
Correll, RR ;
Evans, CR ;
Finn, LS ;
Fox, GC ;
Gomez, R ;
Haupt, T ;
Huq, MF ;
Kidder, LE ;
Klasky, SA ;
Laguna, P ;
Landry, W ;
Lehner, L ;
Lenaghan, J ;
Marsa, RL ;
Masso, J ;
Matzner, RA ;
Mitra, S ;
Papadopoulos, P ;
Parashar, M ;
Saied, F ;
Saylor, PE ;
Scheel, MA ;
Seidel, E ;
Shapiro, SL ;
Shoemaker, D ;
Smarr, L ;
Szilagyi, B ;
Teukolsky, SA ;
van Putten, MHPM ;
Walker, P ;
Winicour, J ;
York, JW .
PHYSICAL REVIEW LETTERS, 1998, 80 (09) :1812-1815
[2]   Dynamical evolution of quasicircular binary black hole data -: art. no. 044004 [J].
Alcubierre, M ;
Brügmann, B ;
Diener, P ;
Guzmán, FS ;
Hawke, I ;
Hawley, S ;
Herrmann, F ;
Koppitz, M ;
Pollney, D ;
Seidel, E ;
Thornburg, J .
PHYSICAL REVIEW D, 2005, 72 (04) :1-14
[3]   Gauge conditions for long-term numerical black hole evolutions without excision -: art. no. 084023 [J].
Alcubierre, M ;
Brügmann, B ;
Diener, P ;
Koppitz, M ;
Pollney, D ;
Seidel, E ;
Takahashi, R .
PHYSICAL REVIEW D, 2003, 67 (08)
[4]   Black hole excision for dynamic black holes -: art. no. 061501 [J].
Alcubierre, M ;
Brügmann, B ;
Pollney, D ;
Seidel, E ;
Takahashi, R .
PHYSICAL REVIEW D, 2001, 64 (06)
[5]   Pathologies of hyperbolic gauges in general relativity and other field theories [J].
Alcubierre, M ;
Masso, J .
PHYSICAL REVIEW D, 1998, 57 (08) :R4511-R4515
[6]   Towards a stable numerical evolution of strongly gravitating systems in general relativity:: The conformal treatments -: art. no. 044034 [J].
Alcubierre, M ;
Brügmann, B ;
Dramlitsch, T ;
Font, JA ;
Papadopoulos, P ;
Seidel, E ;
Stergioulas, N ;
Takahashi, R .
PHYSICAL REVIEW D, 2000, 62 (04) :1-16
[7]   HORIZON BOUNDARY-CONDITION FOR BLACK-HOLE SPACETIMES [J].
ANNINOS, P ;
DAUES, G ;
MASSO, J ;
SEIDEL, E ;
SUEN, WM .
PHYSICAL REVIEW D, 1995, 51 (10) :5562-5578
[8]  
[Anonymous], GODUNOV METHODS THEO
[9]   Single-domain spectral method for black hole puncture data -: art. no. 064011 [J].
Ansorg, M ;
Brügmann, B ;
Tichy, W .
PHYSICAL REVIEW D, 2004, 70 (06) :13
[10]  
Arnowitt R, 1962, Gravitation: An Introduction to Current Research, P227