Pathologies of hyperbolic gauges in general relativity and other field theories

被引:34
作者
Alcubierre, M [1 ]
Masso, J [1 ]
机构
[1] Max Planck Inst Gravitat Phys, Albert Einstein Inst, D-14473 Potsdam, Germany
来源
PHYSICAL REVIEW D | 1998年 / 57卷 / 08期
关键词
D O I
10.1103/PhysRevD.57.R4511
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We present a mathematical characterization of hyperbolic gauge pathologies in electrodynamics and general relativity. We show analytically how non-linear gauge terms can produce a blow-up of some fields along characteristics. We expect similar phenomena to appear in any other gauge field theory. We also present numerical simulations where such blow-ups develop and show how they can be properly identified by performing a convergence analysis. We stress the importance of these results for the particular case of numerical relativity, where we offer some cures based on the use of non-hyperbolic gauges.
引用
收藏
页码:R4511 / R4515
页数:5
相关论文
共 17 条
[1]   EINSTEIN AND YANG-MILLS THEORIES IN HYPERBOLIC FORM WITHOUT GAUGE-FIXING [J].
ABRAHAMS, A ;
ANDERSON, A ;
CHOQUETBRUHAT, Y ;
YORK, JW .
PHYSICAL REVIEW LETTERS, 1995, 75 (19) :3377-3381
[2]   Appearance of coordinate shocks in hyperbolic formalisms of general relativity [J].
Alcubierre, M .
PHYSICAL REVIEW D, 1997, 55 (10) :5981-5991
[3]  
ALCUBIERRE M, UNPUB, P24022
[4]   3-DIMENSIONAL NUMERICAL RELATIVITY - THE EVOLUTION OF BLACK-HOLES [J].
ANNINOS, P ;
CAMARDA, K ;
MASSO, J ;
SEIDEL, E ;
SUEN, WM ;
TOWNS, J .
PHYSICAL REVIEW D, 1995, 52 (04) :2059-2082
[5]  
[Anonymous], 1996, Nonlinear wave equations
[6]  
Arnowitt R. L., 1962, GRAVITATION INTRO CU
[7]  
BERNSTEIN D, 1989, FRONTIERS NUMERICAL
[8]   First order hyperbolic formalism for numerical relativity [J].
Bona, C ;
Masso, J ;
Seidel, E ;
Stela, J .
PHYSICAL REVIEW D, 1997, 56 (06) :3405-3415
[9]   NEW FORMALISM FOR NUMERICAL RELATIVITY [J].
BONA, C ;
MASSO, J ;
SEIDEL, E ;
STELA, J .
PHYSICAL REVIEW LETTERS, 1995, 75 (04) :600-603
[10]   NUMERICAL BLACK-HOLES - A MOVING GRID APPROACH [J].
BONA, C ;
MASSO, J ;
STELA, J .
PHYSICAL REVIEW D, 1995, 51 (04) :1639-1645