The accuracy of the fractional step method

被引:76
作者
Strikwerda, JC
Lee, YS
机构
[1] Univ Wisconsin, Dept Comp Sci, Madison, WI 53706 USA
[2] Manchester Coll, Dept Math & Comp Sci, N Manchester, IN 46962 USA
关键词
incompressible Navier-Stokes; fractional step method; accuracy; boundary conditions;
D O I
10.1137/S0036142997326938
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We analyze the accuracy of the fractional step method of Kim and Moin [J. Comput. Phys., 59 (1985), pp. 308-323] for the incompressible Navier-Stokes equations. We show that the boundary conditions cannot be exactly satisfied in the projection step and that this limits the accuracy of the method. We also show that the pressure in any projection method can be at best first-order accurate. Our analysis is simpler and more direct than the previous analyses of this method. We also show that there is no numerical boundary layer for velocity or pressure, but there is one for the auxiliary pressure variable.
引用
收藏
页码:37 / 47
页数:11
相关论文
共 15 条
[1]   A 2ND-ORDER PROJECTION METHOD FOR THE INCOMPRESSIBLE NAVIER STOKES EQUATIONS [J].
BELL, JB ;
COLELLA, P ;
GLAZ, HM .
JOURNAL OF COMPUTATIONAL PHYSICS, 1989, 85 (02) :257-283
[2]   PROJECTION METHOD .1. CONVERGENCE AND NUMERICAL BOUNDARY-LAYERS [J].
E, WN ;
LIU, JG .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1995, 32 (04) :1017-1057
[3]  
E WN, 1996, SIAM J NUMER ANAL, V33, P1597
[4]   APPLICATION OF A FRACTIONAL-STEP METHOD TO INCOMPRESSIBLE NAVIER-STOKES EQUATIONS [J].
KIM, J ;
MOIN, P .
JOURNAL OF COMPUTATIONAL PHYSICS, 1985, 59 (02) :308-323
[5]   NUMERICAL-METHODS BASED ON ADDITIVE SPLITTINGS FOR HYPERBOLIC PARTIAL-DIFFERENTIAL EQUATIONS [J].
LEVEQUE, RJ ;
OLIGER, J .
MATHEMATICS OF COMPUTATION, 1983, 40 (162) :469-497
[6]  
Orszag S. A., 1986, Journal of Scientific Computing, V1, P75, DOI 10.1007/BF01061454
[7]   AN ANALYSIS OF THE FRACTIONAL STEP METHOD [J].
PEROT, JB .
JOURNAL OF COMPUTATIONAL PHYSICS, 1993, 108 (01) :51-58
[8]  
RANNACHER R, 1992, LECT NOTES MATH, V1530, P167
[9]   ON ERROR-ESTIMATES OF SOME HIGHER-ORDER PROJECTION AND PENALTY-PROJECTION METHODS FOR NAVIER-STOKES EQUATIONS [J].
SHEN, J .
NUMERISCHE MATHEMATIK, 1992, 62 (01) :49-73
[10]   ON ERROR-ESTIMATES OF PROJECTION METHODS FOR NAVIER-STOKES EQUATIONS - 1ST-ORDER SCHEMES [J].
Shen, J .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1992, 29 (01) :57-77