ON ERROR-ESTIMATES OF PROJECTION METHODS FOR NAVIER-STOKES EQUATIONS - 1ST-ORDER SCHEMES

被引:238
作者
Shen, J
机构
[1] INDIANA UNIV, DEPT MATH, BLOOMINGTON, IN 47405 USA
[2] INDIANA UNIV, INST APPL MATH & SCI COMP, BLOOMINGTON, IN 47405 USA
关键词
PROJECTION METHOD; NAVIER-STOKES EQUATIONS; RATE OF CONVERGENCE;
D O I
10.1137/0729004
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper projection methods (or fractional step methods) are studied in the semidiscretized form for the Navier-Stokes equations in a two- or three-dimensional bounded domain. Error estimates for the velocity and the pressure of the classical projection scheme are established via the energy method. A modified projection scheme which leads to improved error estimates is also proposed.
引用
收藏
页码:57 / 77
页数:21
相关论文
共 19 条
[1]   A 2ND-ORDER PROJECTION METHOD FOR THE INCOMPRESSIBLE NAVIER STOKES EQUATIONS [J].
BELL, JB ;
COLELLA, P ;
GLAZ, HM .
JOURNAL OF COMPUTATIONAL PHYSICS, 1989, 85 (02) :257-283
[2]   NUMERICAL SOLUTION OF NAVIER-STOKES EQUATIONS [J].
CHORIN, AJ .
MATHEMATICS OF COMPUTATION, 1968, 22 (104) :745-&
[3]   ON CONVERGENCE OF DISCRETE APPROXIMATIONS TO NAVIER-STOKES EQUATIONS [J].
CHORIN, AJ .
MATHEMATICS OF COMPUTATION, 1969, 23 (106) :341-&
[4]  
FORTIN M, 1971, J MECANIQUE, V10, P357
[5]   FINITE-ELEMENT APPROXIMATION OF THE NONSTATIONARY NAVIER-STOKES PROBLEM .1. REGULARITY OF SOLUTIONS AND 2ND-ORDER ERROR-ESTIMATES FOR SPATIAL DISCRETIZATION [J].
HEYWOOD, JG ;
RANNACHER, R .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1982, 19 (02) :275-311
[6]   FINITE-ELEMENT APPROXIMATION OF THE NONSTATIONARY NAVIER-STOKES PROBLEM .4. ERROR ANALYSIS FOR 2ND-ORDER TIME DISCRETIZATION [J].
HEYWOOD, JG ;
RANNACHER, R .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1990, 27 (02) :353-384
[7]  
Jie Shen, 1990, Applicable Analysis, V38, P201, DOI 10.1080/00036819008839963
[8]   APPLICATION OF A FRACTIONAL-STEP METHOD TO INCOMPRESSIBLE NAVIER-STOKES EQUATIONS [J].
KIM, J ;
MOIN, P .
JOURNAL OF COMPUTATIONAL PHYSICS, 1985, 59 (02) :308-323
[9]  
LU T, IN PRESS APPL MATH L
[10]  
Orszag S. A., 1986, Journal of Scientific Computing, V1, P75, DOI 10.1007/BF01061454