ON ERROR-ESTIMATES OF PROJECTION METHODS FOR NAVIER-STOKES EQUATIONS - 1ST-ORDER SCHEMES

被引:238
作者
Shen, J
机构
[1] INDIANA UNIV, DEPT MATH, BLOOMINGTON, IN 47405 USA
[2] INDIANA UNIV, INST APPL MATH & SCI COMP, BLOOMINGTON, IN 47405 USA
关键词
PROJECTION METHOD; NAVIER-STOKES EQUATIONS; RATE OF CONVERGENCE;
D O I
10.1137/0729004
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper projection methods (or fractional step methods) are studied in the semidiscretized form for the Navier-Stokes equations in a two- or three-dimensional bounded domain. Error estimates for the velocity and the pressure of the classical projection scheme are established via the energy method. A modified projection scheme which leads to improved error estimates is also proposed.
引用
收藏
页码:57 / 77
页数:21
相关论文
共 19 条
[11]  
PEYRET R, 1983, COMPUTATIONAL METHOD
[12]   HOPF-BIFURCATION OF THE UNSTEADY REGULARIZED DRIVEN CAVITY FLOW [J].
SHEN, J .
JOURNAL OF COMPUTATIONAL PHYSICS, 1991, 95 (01) :228-245
[13]  
SHEN J, 1989, MAT APL COMPUT, V8, P3
[14]  
SHEN J, UNPUB NUMER MATH
[15]  
TEMAM R, 1969, ARCH RATION MECH AN, V33, P377
[17]  
Temam R., 1984, NAVIER STOKES EQUATI, V2
[18]  
TEMAM R, 1983, CBMS NSF REGIOANL C
[19]   A 2ND-ORDER ACCURATE PRESSURE-CORRECTION SCHEME FOR VISCOUS INCOMPRESSIBLE-FLOW [J].
VANKAN, J .
SIAM JOURNAL ON SCIENTIFIC AND STATISTICAL COMPUTING, 1986, 7 (03) :870-891