Histone deacetylase inhibitors open new doors in cancer therapy

被引:128
作者
McLaughlin, F [1 ]
La Thangue, NB [1 ]
机构
[1] Univ Glasgow, Div Biochem & Mol Biol, Glasgow G12 8QQ, Lanark, Scotland
基金
英国医学研究理事会;
关键词
histone deacetylase; chromatin; cell cycle; acetylation; transcription;
D O I
10.1016/j.bcp.2004.05.034
中图分类号
R9 [药学];
学科分类号
1007 ;
摘要
Cancer drug development has moved from conventional cytotoxic chemotherapeutics to a more mechanism-based targeted approach towards the common goal of tumour growth arrest. The rapid progress in chromatin research has supplied a plethora of potential targets for intervention in cancer. Here, we focus on the histone deacetylase (HDAC) inhibitors, together with their current status of clinical development and potential utility in cancer therapy. HDACs have been widely implicated in growth and transcriptional control, and inhibition of HDAC activity using small molecules causes apoptosis in tumour cells. We discuss the rationale for the development of HDAC inhibitors as novel anti-cancer agents, the potential clinical application and explore ideas on how we may move towards patient stratification with the possibility of increasing efficacy in the clinic. (C) 2004 Elsevier Inc. All rights reserved.
引用
收藏
页码:1139 / 1144
页数:6
相关论文
共 46 条
[1]   Class II histone deacetylases: Structure, function, and regulation [J].
Bertos, NR ;
Wang, AH ;
Yang, XJ .
BIOCHEMISTRY AND CELL BIOLOGY, 2001, 79 (03) :243-252
[2]   Valproate and valproate-analogues: Potent tools to fight against cancer [J].
Blaheta, RA ;
Nau, H ;
Michaelis, M ;
Cinatl, J .
CURRENT MEDICINAL CHEMISTRY, 2002, 9 (15) :1417-1433
[3]   THE SIR2 GENE FAMILY, CONSERVED FROM BACTERIA TO HUMANS, FUNCTIONS IN SILENCING, CELL-CYCLE PROGRESSION, AND CHROMOSOME STABILITY [J].
BRACHMANN, CB ;
SHERMAN, JM ;
DEVINE, SE ;
CAMERON, EE ;
PILLUS, L ;
BOEKE, JD .
GENES & DEVELOPMENT, 1995, 9 (23) :2888-2902
[4]   Acetylation control of the retinoblastoma tumour-suppressor protein [J].
Chan, HM ;
Krstic-Demonacos, M ;
Smith, L ;
Demonacos, C ;
La Thangue, NB .
NATURE CELL BIOLOGY, 2001, 3 (07) :667-674
[5]   Developmental defects and p53 hyperacetylation in Sir2 homolog (SIRT1)-deficient mice [J].
Cheng, HL ;
Mostoslavsky, R ;
Saito, S ;
Manis, JP ;
Gu, YS ;
Patel, P ;
Bronson, R ;
Appella, E ;
Alt, FW ;
Chua, KF .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2003, 100 (19) :10794-10799
[6]   Broad spectrum antiprotozoal agents that inhibit histone deacetylase: Structure-activity relationships of apicidin. Part 2 [J].
Colletti, SL ;
Myers, RW ;
Darkin-Rattray, SJ ;
Gurnett, AM ;
Dulski, PM ;
Galuska, S ;
Allocco, JJ ;
Ayer, MB ;
Li, CS ;
Lim, J ;
Crumley, TM ;
Cannova, C ;
Schmatz, DM ;
Wyvratt, MJ ;
Fisher, MH ;
Meinke, PT .
BIOORGANIC & MEDICINAL CHEMISTRY LETTERS, 2001, 11 (02) :113-117
[7]   Histone deacetylase inhibitors: The Abbott experience [J].
Curtin, M ;
Glaser, K .
CURRENT MEDICINAL CHEMISTRY, 2003, 10 (22) :2373-2392
[8]   Histone deacetylases (HDACs): characterization of the classical HDAC family [J].
De Ruijter, AJM ;
Van Gennip, AH ;
Caron, HN ;
Kemp, S ;
Van Kuilenburg, ABP .
BIOCHEMICAL JOURNAL, 2003, 370 :737-749
[9]   HDAC7, a thymus-specific class II histone deacetylase, regulates Nur77 transcription and TCR-mediated apoptosis [J].
Dequiedt, F ;
Kasler, H ;
Fischle, W ;
Kiermer, V ;
Weinstein, M ;
Herndier, BG ;
Verdin, E .
IMMUNITY, 2003, 18 (05) :687-698
[10]   Structures of a histone deacetylase homologue bound to the TSA and SAHA inhibitors [J].
Finnin M.S. ;
Donigian J.R. ;
Cohen A. ;
Richon V.M. ;
Rifkind R.A. ;
Marks P.A. ;
Breslow R. ;
Pavletich N.P. .
Nature, 1999, 401 (6749) :188-193