Combinatorial control of yeast FET4 gene expression by iron, zinc, and oxygen

被引:99
作者
Waters, BM
Eide, DJ
机构
[1] Univ Missouri, Dept Nutrit Sci, Columbia, MO 65211 USA
[2] Univ Missouri, Dept Agron, Columbia, MO 65211 USA
关键词
D O I
10.1074/jbc.M206214200
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Acquisition of metals such as iron, copper, and zinc by the yeast Saccharomyces cerevisiae is tightly regulated. High affinity uptake systems are induced under metal-limiting conditions to maintain an adequate supply of these essential nutrients. Low affinity uptake systems function when their substrates are in greater supply. The FET4 gene encodes a low affinity iron and copper uptake transporter. FET4 expression is regulated by several environmental factors. In this report, we describe the molecular mechanisms underlying this regulation. First, we found that FET4 expression is induced in iron-limited cells by the Aft1 iron-responsive transcriptional activator. Second, FET4 is regulated by zinc status via the Zap1 transcription factor. We present evidence that FET4 is a physiologically relevant zinc transporter and this provides a rationale for its regulation by Zap1. Finally, FET4 expression is regulated in response to oxygen by the Rox1 repressor. Rox1 attenuates activation by Aft1 and Zap1 in aerobic cells. Derepression of FET4 may allow the Fet4 transporter to play an even greater role in metal acquisition under anaerobic conditions. Thus, Fet4 is a multisubstrate metal ion transporter under combinatorial control by iron, zinc, and oxygen.
引用
收藏
页码:33749 / 33757
页数:9
相关论文
共 52 条
[1]   THE FET3 GENE OF SACCHAROMYCES-CEREVISIAE ENCODES A MULTICOPPER OXIDASE REQUIRED FOR FERROUS IRON UPTAKE [J].
ASKWITH, C ;
EIDE, D ;
VANHO, A ;
BERNARD, PS ;
LI, LT ;
DAVISKAPLAN, S ;
SIPE, DM ;
KAPLAN, J .
CELL, 1994, 76 (02) :403-410
[2]   Metal toxicity in yeasts and the role of oxidative stress [J].
Avery, SV .
ADVANCES IN APPLIED MICROBIOLOGY, VOL 49, 2001, 49 :111-142
[3]   Aft2p, a novel iron-regulated transcription activator that modulates, with Aft1p, intracellular iron use and resistance to oxidative stress in yeast. [J].
Blaiseau, PL ;
Lesuisse, E ;
Camadro, JM .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2001, 276 (36) :34221-34226
[4]  
Casas C, 1997, YEAST, V13, P621, DOI 10.1002/(SICI)1097-0061(19970615)13:7<621::AID-YEA121>3.0.CO
[5]  
2-U
[6]  
Cooper TG, 1982, MOL BIOL YEAST SACCH, P399
[7]   MOLECULAR CHARACTERIZATION OF A COPPER TRANSPORT PROTEIN IN SACCHAROMYCES-CEREVISIAE - AN UNEXPECTED ROLE FOR COPPER IN IRON TRANSPORT [J].
DANCIS, A ;
YUAN, DS ;
HAILE, D ;
ASKWITH, C ;
EIDE, D ;
MOEHLE, C ;
KAPLAN, J ;
KLAUSNER, RD .
CELL, 1994, 76 (02) :393-402
[8]  
DANCIS A, 1994, J BIOL CHEM, V269, P25660
[9]   GENETIC-EVIDENCE THAT FERRIC REDUCTASE IS REQUIRED FOR IRON UPTAKE IN SACCHAROMYCES-CEREVISIAE [J].
DANCIS, A ;
KLAUSNER, RD ;
HINNEBUSCH, AG ;
BARRIOCANAL, JG .
MOLECULAR AND CELLULAR BIOLOGY, 1990, 10 (05) :2294-2301
[10]  
DECKERT J, 1995, MOL CELL BIOL, V15, P6109