Independent centromere formation in a capricious, gene-free domain of chromosome 13q21 in Old World monkeys and pigs

被引:44
作者
Cardone, Maria Francesca
Alonso, Alicia
Pazienza, Michele
Ventura, Mario
Montemurro, Gabriella
Carbone, Lucia
de Jong, Pieter J.
Stanyon, Roscoe
D'Addabbo, Pietro
Archidiacono, Nicoletta
She, Xinwei
Eichler, Evan E.
Warburton, Peter E.
Rocchi, Mariano [1 ]
机构
[1] Univ Bari, Dept Genet & Microbiol, Bari, Italy
[2] CUNY Mt Sinai Sch Med, Dept Human Genet, New York, NY 10029 USA
[3] Childrens Hosp Oakland, Res Inst, Oakland, CA 94609 USA
[4] Univ Florence, Dept Anim Biol & Genet Leo Pardi, Florence, Italy
[5] Univ Washington, Sch Med, Dept Genome Sci, Howard Hughes Med Inst, Seattle, WA 98195 USA
关键词
D O I
10.1186/gb-2006-7-10-r91
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Background: Evolutionary centromere repositioning and human analphoid neocentromeres occurring in clinical cases are, very likely, two stages of the same phenomenon whose properties still remain substantially obscure. Chromosome 13 is the chromosome with the highest number of neocentromeres. We reconstructed the mammalian evolutionary history of this chromosome and characterized two human neocentromeres at 13q21, in search of information that could improve our understanding of the relationship between evolutionarily new centromeres, inactivated centromeres, and clinical neocentromeres. Results: Chromosome 13 evolution was studied, using FISH experiments, across several diverse superordinal phylogenetic clades spanning > 100 million years of evolution. The analysis revealed exceptional conservation among primates (hominoids, Old World monkeys, and New World monkeys), Carnivora (cat), Perissodactyla (horse), and Cetartiodactyla (pig). In contrast, the centromeres in both Old World monkeys and pig have apparently repositioned independently to a central location (13q21). We compared these results to the positions of two human 13q21 neocentromeres using chromatin immunoprecipitation and genomic microarrays. Conclusion: We show that a gene-desert region at 13q21 of approximately 3.9 Mb in size possesses an inherent potential to form evolutionarily new centromeres over, at least, approximately 95 million years of mammalian evolution. The striking absence of genes may represent an important property, making the region tolerant to the extensive pericentromeric reshuffling during subsequent evolution. Comparison of the pericentromeric organization of chromosome 13 in four Old World monkey species revealed many differences in sequence organization. The region contains clusters of duplicons showing peculiar features.
引用
收藏
页数:13
相关论文
共 44 条
  • [1] Genomic microarray analysis reveals distinct locations for the CENP-A binding domains in three human chromosome 13q32 neocentromeres
    Alonso, A
    Mahmood, R
    Li, SL
    Cheung, F
    Yoda, K
    Warburton, PE
    [J]. HUMAN MOLECULAR GENETICS, 2003, 12 (20) : 2711 - 2721
  • [2] Human centromere repositioning "in progress"
    Amor, DJ
    Bentley, K
    Ryan, J
    Perry, J
    Wong, L
    Slater, H
    Choo, KHA
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2004, 101 (17) : 6542 - 6547
  • [3] Neocentromeres: Role in human disease, evolution, and centromere study
    Amor, DJ
    Choo, KHA
    [J]. AMERICAN JOURNAL OF HUMAN GENETICS, 2002, 71 (04) : 695 - 714
  • [4] CENP-A, -B, and -C chromatin complex that contains the I-type α-satellite array constitutes the prekinetochore in HeLa cells
    Ando, S
    Yang, H
    Nozaki, N
    Okazaki, T
    Yoda, K
    [J]. MOLECULAR AND CELLULAR BIOLOGY, 2002, 22 (07) : 2229 - 2241
  • [5] Segmental duplications: Organization and impact within the current Human Genome Project assembly
    Bailey, JA
    Yavor, AM
    Massa, HF
    Trask, BJ
    Eichler, EE
    [J]. GENOME RESEARCH, 2001, 11 (06) : 1005 - 1017
  • [6] Bourque G, 2002, GENOME RES, V12, P26
  • [7] Evolutionary history of chromosome 10 in primates
    Carbone, L
    Ventura, M
    Tempesta, S
    Rocchi, M
    Archidiacono, N
    [J]. CHROMOSOMA, 2002, 111 (04) : 267 - 272
  • [8] Evolutionary movement of centromeres in horse, donkey, and zebra
    Carbone, Lucia
    Nergadze, Solomon G.
    Magnani, Elisa
    Misceo, Doriana
    Cardone, Maria Francesca
    Roberto, Roberta
    Bertoni, Livia
    Attolini, Carmen
    Piras, Maria Francesca
    de Jong, Pieter
    Raudsepp, Terje
    Chowdhary, Bhanu P.
    Guerin, Gerard
    Archidiacono, Nicoletta
    Rocchi, Mariano
    Giulotto, Elena
    [J]. GENOMICS, 2006, 87 (06) : 777 - 782
  • [9] Comparative chromosome painting between marsupial orders: Relationships with a 2n=14 ancestral marsupial karyotype
    De Leo, AA
    Guedelha, N
    Toder, R
    Voullaire, L
    Ferguson-Smith, MA
    O'Brien, PCM
    Graves, JAM
    [J]. CHROMOSOME RESEARCH, 1999, 7 (07) : 509 - 517
  • [10] The DNA sequence and analysis of human chromosome 13
    Dunham, A
    Matthews, LH
    Burton, J
    Ashurst, JL
    Howe, KL
    Ashcroft, KJ
    Beare, DM
    Burford, DC
    Hunt, SE
    Griffiths-Jones, S
    Jones, MC
    Keenan, SJ
    Oliver, K
    Scott, CE
    Ainscough, R
    Almeida, JP
    Ambrose, KD
    Andrews, DT
    Ashwell, RIS
    Babbage, AK
    Bagguley, CL
    Bailey, J
    Bannerjee, R
    Barlow, KF
    Bates, K
    Beasley, H
    Bird, CP
    Bray-Allen, S
    Brown, AJ
    Brown, JY
    Burrill, W
    Carder, C
    Carter, NP
    Chapman, JC
    Clamp, ME
    Clark, SY
    Clarke, G
    Clee, CM
    Clegg, SCM
    Cobley, V
    Collins, JE
    Corby, N
    Coville, GJ
    Deloukas, P
    Dhami, P
    Dunham, I
    Dunn, M
    Earthrowl, ME
    Ellington, AG
    Faulkner, L
    [J]. NATURE, 2004, 428 (6982) : 522 - 528