Independent centromere formation in a capricious, gene-free domain of chromosome 13q21 in Old World monkeys and pigs

被引:44
作者
Cardone, Maria Francesca
Alonso, Alicia
Pazienza, Michele
Ventura, Mario
Montemurro, Gabriella
Carbone, Lucia
de Jong, Pieter J.
Stanyon, Roscoe
D'Addabbo, Pietro
Archidiacono, Nicoletta
She, Xinwei
Eichler, Evan E.
Warburton, Peter E.
Rocchi, Mariano [1 ]
机构
[1] Univ Bari, Dept Genet & Microbiol, Bari, Italy
[2] CUNY Mt Sinai Sch Med, Dept Human Genet, New York, NY 10029 USA
[3] Childrens Hosp Oakland, Res Inst, Oakland, CA 94609 USA
[4] Univ Florence, Dept Anim Biol & Genet Leo Pardi, Florence, Italy
[5] Univ Washington, Sch Med, Dept Genome Sci, Howard Hughes Med Inst, Seattle, WA 98195 USA
关键词
D O I
10.1186/gb-2006-7-10-r91
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Background: Evolutionary centromere repositioning and human analphoid neocentromeres occurring in clinical cases are, very likely, two stages of the same phenomenon whose properties still remain substantially obscure. Chromosome 13 is the chromosome with the highest number of neocentromeres. We reconstructed the mammalian evolutionary history of this chromosome and characterized two human neocentromeres at 13q21, in search of information that could improve our understanding of the relationship between evolutionarily new centromeres, inactivated centromeres, and clinical neocentromeres. Results: Chromosome 13 evolution was studied, using FISH experiments, across several diverse superordinal phylogenetic clades spanning > 100 million years of evolution. The analysis revealed exceptional conservation among primates (hominoids, Old World monkeys, and New World monkeys), Carnivora (cat), Perissodactyla (horse), and Cetartiodactyla (pig). In contrast, the centromeres in both Old World monkeys and pig have apparently repositioned independently to a central location (13q21). We compared these results to the positions of two human 13q21 neocentromeres using chromatin immunoprecipitation and genomic microarrays. Conclusion: We show that a gene-desert region at 13q21 of approximately 3.9 Mb in size possesses an inherent potential to form evolutionarily new centromeres over, at least, approximately 95 million years of mammalian evolution. The striking absence of genes may represent an important property, making the region tolerant to the extensive pericentromeric reshuffling during subsequent evolution. Comparison of the pericentromeric organization of chromosome 13 in four Old World monkey species revealed many differences in sequence organization. The region contains clusters of duplicons showing peculiar features.
引用
收藏
页数:13
相关论文
共 44 条
  • [31] Catarrhine primate divergence dates estimated from complete mitochondrial genomes: concordance with fossil and nuclear DNA evidence
    Raaum, RL
    Sterner, KN
    Noviello, CM
    Stewart, CB
    Disotell, TR
    [J]. JOURNAL OF HUMAN EVOLUTION, 2005, 48 (03) : 237 - 257
  • [32] Alu insertion loci and platyrrhine primate phylogeny
    Ray, DA
    Xing, J
    Hedges, DJ
    Hall, MA
    Laborde, ME
    Anders, BA
    White, BR
    Stoilova, N
    Fowlkes, JD
    Landry, KE
    Chemnick, LG
    Ryder, OA
    Batzer, MA
    [J]. MOLECULAR PHYLOGENETICS AND EVOLUTION, 2005, 35 (01) : 117 - 126
  • [33] Transcription within a functional human centromere
    Saffery, R
    Sumer, H
    Hassan, S
    Wong, LH
    Craig, JM
    Todokoro, K
    Anderson, M
    Stafford, A
    Choo, KHA
    [J]. MOLECULAR CELL, 2003, 12 (02) : 509 - 516
  • [34] The structure and evolution of centromeric transition regions within the human genome
    She, XW
    Horvath, JE
    Jiang, ZS
    Liu, G
    Furey, TS
    Christ, L
    Clark, R
    Graves, T
    Gulden, CL
    Alkan, C
    Bailey, JA
    Sahinalp, C
    Rocchi, M
    Haussler, D
    Wilson, RK
    Miller, W
    Schwartz, S
    Eichler, EE
    [J]. NATURE, 2004, 430 (7002) : 857 - 864
  • [35] Normalization of cDNA microarray data
    Smyth, GK
    Speed, T
    [J]. METHODS, 2003, 31 (04) : 265 - 273
  • [36] Placental mammal diversification and the Cretaceous-Tertiary boundary
    Springer, MS
    Murphy, WJ
    Eizirik, E
    O'Brien, SJ
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2003, 100 (03) : 1056 - 1061
  • [37] A chromosome painting test of the basal Eutherian karyotype
    Svartman, M
    Stone, G
    Page, JE
    Stanyon, R
    [J]. CHROMOSOME RESEARCH, 2004, 12 (01) : 45 - 53
  • [38] Recurrent sites for new centromere seeding
    Ventura, M
    Weigl, S
    Carbone, L
    Cardone, MF
    Misceo, D
    Teti, M
    D'Addabbo, P
    Wandall, A
    Björck, E
    de Jong, PJ
    She, XW
    Eichler, EE
    Archidiacono, N
    Rocchi, M
    [J]. GENOME RESEARCH, 2004, 14 (09) : 1696 - 1703
  • [39] Neocentromeres in 15q24-26 map to duplicons which flanked an ancestral centromere in 15q25
    Ventura, M
    Mudge, JM
    Palumbo, V
    Burn, S
    Blennow, E
    Pierluigi, M
    Giorda, R
    Zuffardi, O
    Archidiacono, N
    Jackson, MS
    Rocchi, M
    [J]. GENOME RESEARCH, 2003, 13 (09) : 2059 - 2068
  • [40] Centromere emergence in evolution
    Ventura, M
    Archidiacono, N
    Rocchi, M
    [J]. GENOME RESEARCH, 2001, 11 (04) : 595 - 599