A modified algorithm for generalized discriminant analysis

被引:31
作者
Zheng, WM [1 ]
Zhao, L [1 ]
Zou, CR [1 ]
机构
[1] Southeast Univ, Engn Res Ctr Informat Proc & Applicat, Nanjing 210096, Jiangsu, Peoples R China
关键词
D O I
10.1162/089976604773717612
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Generalized discriminant analysis (GDA) is an extension of the classical linear discriminant analysis (LDA) from linear domain to a nonlinear domain via the kernel trick. However, in the previous algorithm of GDA, the solutions may suffer from the degenerate eigenvalue problem (i.e., several eigenvectors with the same eigenvalue), which makes them not optimal in terms of the discriminant ability. In this letter, we propose a modified algorithm for GDA (MGDA) to solve this problem. The MGDA method aims to remove the degeneracy of GDA and find the optimal discriminant solutions, which maximize the between-class scatter in the subspace spanned by the degenerate eigenvectors of GDA. Theoretical analysis and experimental results on the ORL face database show that the MGDA method achieves better performance than the GDA method.
引用
收藏
页码:1283 / 1297
页数:15
相关论文
共 12 条
[1]   Generalized discriminant analysis using a kernel approach [J].
Baudat, G ;
Anouar, FE .
NEURAL COMPUTATION, 2000, 12 (10) :2385-2404
[2]   A new LDA-based face recognition system which can solve the small sample size problem [J].
Chen, LF ;
Liao, HYM ;
Ko, MT ;
Lin, JC ;
Yu, GJ .
PATTERN RECOGNITION, 2000, 33 (10) :1713-1726
[3]   Discriminant waveletfaces and nearest feature classifiers for face recognition [J].
Chien, JT ;
Wu, CC .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2002, 24 (12) :1644-1649
[4]   AN OPTIMAL TRANSFORMATION FOR DISCRIMINANT AND PRINCIPAL COMPONENT ANALYSIS [J].
DUCHENE, J ;
LECLERCQ, S .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 1988, 10 (06) :978-983
[5]  
Duda R. O., 1973, PATTERN CLASSIFICATI
[6]   OPTIMAL SET OF DISCRIMINANT VECTORS [J].
FOLEY, DH ;
SAMMON, JW .
IEEE TRANSACTIONS ON COMPUTERS, 1975, C 24 (03) :281-289
[7]  
Fukunaga K., 1990, INTRO STAT PATTERN R
[8]   Face recognition based on the uncorrelated discriminant transformation [J].
Jin, Z ;
Yang, JY ;
Hu, ZS ;
Lou, Z .
PATTERN RECOGNITION, 2001, 34 (07) :1405-1416
[9]  
Schiff L. I., 1968, QUANTUM MECH
[10]   Nonlinear component analysis as a kernel eigenvalue problem [J].
Scholkopf, B ;
Smola, A ;
Muller, KR .
NEURAL COMPUTATION, 1998, 10 (05) :1299-1319