A unifying probabilistic Bayesian approach to derive electron density from MRI for radiation therapy treatment planning

被引:72
作者
Gudur, Madhu Sudhan Reddy [1 ]
Hara, Wendy [1 ]
Le, Quynh-Thu [1 ]
Wang, Lei [1 ]
Xing, Lei [1 ]
Li, Ruijiang [1 ]
机构
[1] Stanford Univ, Dept Radiat Oncol, Palo Alto, CA 94043 USA
基金
美国国家卫生研究院;
关键词
electron density; MRI/CT reconstruction; Bayesian; ULTRASHORT ECHO TIME; ATTENUATION-CORRECTION; COMPUTED-TOMOGRAPHY; VOLUME DELINEATION; RADIOTHERAPY; CT; SEGMENTATION; SEQUENCES;
D O I
10.1088/0031-9155/59/21/6595
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
MRI significantly improves the accuracy and reliability of target delineation in radiation therapy for certain tumors due to its superior soft tissue contrast compared to CT. A treatment planning process with MRI as the sole imaging modality will eliminate systematic CT/MRI co-registration errors, reduce cost and radiation exposure, and simplify clinical workflow. However, MRI lacks the key electron density information necessary for accurate dose calculation and generating reference images for patient setup. The purpose of this work is to develop a unifying method to derive electron density from standard T1-weighted MRI. We propose to combine both intensity and geometry information into a unifying probabilistic Bayesian framework for electron density mapping. For each voxel, we compute two conditional probability density functions (PDFs) of electron density given its: (1) T1-weighted MRI intensity, and (2) geometry in a reference anatomy, obtained by deformable image registration between the MRI of the atlas and test patient. The two conditional PDFs containing intensity and geometry information are combined into a unifying posterior PDF, whose mean value corresponds to the optimal electron density value under the mean-square error criterion. We evaluated the algorithm's accuracy of electron density mapping and its ability to detect bone in the head for eight patients, using an additional patient as the atlas or template. Mean absolute HU error between the estimated and true CT, as well as receiver operating characteristics for bone detection (HU > 200) were calculated. The performance was compared with a global intensity approach based on T1 and no density correction (set whole head to water). The proposed technique significantly reduced the errors in electron density estimation, with a mean absolute HU error of 126, compared with 139 for deformable registration (p = 2 x 10(-4)), 283 for the intensity approach (p = 2 x 10(-6)) and 282 without density correction (p = 5 x 10(-6)). For 90% sensitivity in bone detection, the proposed method achieved a specificity of 86%, compared with 80, 11 and 10% using deformable registration, intensity and without density correction, respectively. Notably, the Bayesian approach was more robust against anatomical differences between patients, with a specificity of 62% in the worst case (patient), compared to 30% specificity in registration-based approach. In conclusion, the proposed unifying Bayesian method provides accurate electron density estimation and bone detection from MRI of the head with highly heterogeneous anatomy.
引用
收藏
页码:6595 / 6606
页数:12
相关论文
共 21 条
[1]   MRI-Based Attenuation Correction for Hybrid PET/MRI Systems: A 4-Class Tissue Segmentation Technique Using a Combined Ultrashort-Echo-Time/Dixon MRI Sequence [J].
Berker, Yannick ;
Franke, Jochen ;
Salomon, Andre ;
Palmowski, Moritz ;
Donker, Henk C. W. ;
Temur, Yavuz ;
Mottaghy, Felix M. ;
Kuhl, Christiane ;
Izquierdo-Garcia, David ;
Fayad, Zahi A. ;
Kiessling, Fabian ;
Schulz, Volkmar .
JOURNAL OF NUCLEAR MEDICINE, 2012, 53 (05) :796-804
[2]  
Bowman AW., 1997, Applied Smoothing Techniques for Data Analysis: The Kernel Approach with S-Plus Illustrations, Vvol. 18
[3]   Toward Implementing an MRI-Based PET Attenuation-Correction Method for Neurologic Studies on the MR-PET Brain Prototype [J].
Catana, Ciprian ;
van der Kouwe, Andre ;
Benner, Thomas ;
Michel, Christian J. ;
Hamm, Michael ;
Fenchel, Matthias ;
Fischl, Bruce ;
Rosen, Bruce ;
Schmand, Matthias ;
Sorensen, A. Gregory .
JOURNAL OF NUCLEAR MEDICINE, 2010, 51 (09) :1431-1438
[4]   Magnetic resonance-based treatment planning for prostate intensity-modulated radiotherapy:: Creation of digitally reconstructed radiographs [J].
Chen, Lili ;
Nguyen, Thai-Binh ;
Jones, Elan ;
Chen, Zuoqun ;
Luo, Wei ;
Wang, Lu ;
Price, Robert A., Jr. ;
Pollack, Alan ;
Ma, C.-M. Charlie .
INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS, 2007, 68 (03) :903-911
[5]   MRI simulation for radiotherapy treatment planning [J].
Devic, Slobodan .
MEDICAL PHYSICS, 2012, 39 (11) :6701-6711
[6]   An Atlas-Based Electron Density Mapping Method for Magnetic Resonance Imaging (MRI)-Alone Treatment Planning and Adaptive MRI-Based Prostate Radiation Therapy [J].
Dowling, Jason A. ;
Lambert, Jonathan ;
Parker, Joel ;
Salvado, Olivier ;
Fripp, Jurgen ;
Capp, Anne ;
Wratten, Chris ;
Denham, James W. ;
Greer, Peter B. .
INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS, 2012, 83 (01) :E5-E11
[7]   Investigation of a method for generating synthetic CT models from MRI scans of the head and neck for radiation therapy [J].
Hsu, Shu-Hui ;
Cao, Yue ;
Huang, Ke ;
Feng, Mary ;
Balter, James M. .
PHYSICS IN MEDICINE AND BIOLOGY, 2013, 58 (23) :8419-8435
[8]   Evaluation of an atlas-based automatic segmentation software for the delineation of brain organs at risk in a radiation therapy clinical context [J].
Isambert, Aurelie ;
Dhermain, Frederic ;
Bidault, Francois ;
Commowick, Olivier ;
Bondiau, Pierre-Yves ;
Malandain, Gregoire ;
Lefkopoulos, Dimitri .
RADIOTHERAPY AND ONCOLOGY, 2008, 87 (01) :93-99
[9]   CT substitute derived from MRI sequences with ultrashort echo time [J].
Johansson, Adam ;
Karlsson, Mikael ;
Nyholm, Tufve .
MEDICAL PHYSICS, 2011, 38 (05) :2708-2714
[10]   T1/T2☆-weighted MRI provides clinically relevant pseudo-CT density data for the pelvic bones in MRI-only based radiotherapy treatment planning [J].
Kapanen, Mika ;
Tenhunen, Mikko .
ACTA ONCOLOGICA, 2013, 52 (03) :612-618