Near-field electrical detection of optical plasmons and single-plasmon sources

被引:270
作者
Falk, Abram L. [1 ]
Koppens, Frank H. L. [1 ]
Yu, Chun L. [2 ]
Kang, Kibum [3 ]
Snapp, Nathalie de Leon [2 ]
Akimov, Alexey V. [1 ]
Jo, Moon-Ho [3 ]
Lukin, Mikhail D. [1 ]
Park, Hongkun [1 ,2 ]
机构
[1] Harvard Univ, Dept Phys, Cambridge, MA 02138 USA
[2] Harvard Univ, Dept Chem & Chem Biol, Cambridge, MA 02138 USA
[3] Pohang Univ Sci & Technol, Dept Mat Sci & Engn, Pohang 790784, Gyungbuk, South Korea
基金
美国国家科学基金会;
关键词
PROPAGATION; MODULATION;
D O I
10.1038/NPHYS1284
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Photonic circuits can be much faster than their electronic counterparts, but they are difficult to miniaturize below the optical wavelength scale. Nanoscale photonic circuits based on surface plasmon polaritons (SPPs) are a promising solution to this problem because they can localize light below the diffraction limit(1-8). However, there is a general trade-off between the localization of an SPP and the efficiency with which it can be detected with conventional far-field optics. Here, we describe a new all-electrical SPP detection technique based on the near-field coupling between guided plasmons and a nanowire field-effect transistor. We use the technique to electrically detect the plasmon emission from an individual colloidal quantum dot coupled to an SPP waveguide. Our detectors are both nanoscale and highly efficient (similar to 0.1 electrons per plasmon), and a plasmonic gating effect can be used to amplify the signal even higher ( up to 50 electrons per plasmon). These results may enable new on-chip optical sensing applications and are a key step towards 'dark' optoplasmonic nanocircuits in which SPPs can be generated, manipulated and detected without involving far-field radiation.
引用
收藏
页码:475 / 479
页数:5
相关论文
共 30 条
[1]   Efficient visible light detection using individual germanium nanowire field effect transistors [J].
Ahn, Y. H. ;
Park, Jiwoong .
APPLIED PHYSICS LETTERS, 2007, 91 (16)
[2]   Generation of single optical plasmons in metallic nanowires coupled to quantum dots [J].
Akimov, A. V. ;
Mukherjee, A. ;
Yu, C. L. ;
Chang, D. E. ;
Zibrov, A. S. ;
Hemmer, P. R. ;
Park, H. ;
Lukin, M. D. .
NATURE, 2007, 450 (7168) :402-406
[3]   The new p-n junction": Plasmonics enables photonic access to the nanoworld" [J].
Harry A. Atwater ;
Stefan Maier ;
Albert Polman ;
Jennifer A. Dionne ;
Luke Sweatlock .
MRS Bulletin, 2005, 30 (5) :385-389
[4]   Surface plasmon subwavelength optics [J].
Barnes, WL ;
Dereux, A ;
Ebbesen, TW .
NATURE, 2003, 424 (6950) :824-830
[5]   Channel plasmon subwavelength waveguide components including interferometers and ring resonators [J].
Bozhevolnyi, SI ;
Volkov, VS ;
Devaux, E ;
Laluet, JY ;
Ebbesen, TW .
NATURE, 2006, 440 (7083) :508-511
[6]   ZERO-DIMENSIONAL EXCITONS IN SEMICONDUCTOR CLUSTERS [J].
BRUS, L .
IEEE JOURNAL OF QUANTUM ELECTRONICS, 1986, 22 (09) :1909-1914
[7]   Strong coupling of single emitters to surface plasmons [J].
Chang, D. E. ;
Sorensen, A. S. ;
Hemmer, P. R. ;
Lukin, M. D. .
PHYSICAL REVIEW B, 2007, 76 (03)
[8]   Quantum optics with surface plasmons [J].
Chang, D. E. ;
Sorensen, A. S. ;
Hemmer, P. R. ;
Lukin, M. D. .
PHYSICAL REVIEW LETTERS, 2006, 97 (05)
[9]   A single-photon transistor using nanoscale surface plasmons [J].
Chang, Darrick E. ;
Sorensen, Anders S. ;
Demler, Eugene A. ;
Lukin, Mikhail D. .
NATURE PHYSICS, 2007, 3 (11) :807-812
[10]   Local electrical detection of single nanoparticle plasmon resonance [J].
De Vlaminck, Iwijn ;
Van Dorpe, Pol ;
Lagae, Liesbet ;
Borghs, Gustaaf .
NANO LETTERS, 2007, 7 (03) :703-706