Bound states of nonlinear Schrodinger equations with a periodic nonlinear microstructure

被引:101
作者
Fibich, G. [1 ]
Sivan, Y.
Weinstein, M. I.
机构
[1] Tel Aviv Univ, Sch Math Sci, IL-69978 Tel Aviv, Israel
[2] Tel Aviv Univ, Sch Phys & Astron, IL-69978 Tel Aviv, Israel
[3] Columbia Univ, Dept Appl Phys & Appl Math, New York, NY 10027 USA
基金
美国国家科学基金会;
关键词
microstructure; homogenization; instability; collapse; periodic potential; solitary waves; nonlinear waves; Bose-Einstein Condensation (BEC);
D O I
10.1016/j.physd.2006.03.009
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider nonlinear bound states of the nonlinear Schrodinger equation i partial derivative(z)phi (z, x) = -partial derivative(2)(x)phi - (1 + m(Nx)) vertical bar phi vertical bar (p-1) phi in the presence of a nonlinear periodic microstructure m(Nx). This equation models the propagation of laser beams in a medium whose nonlinear refractive index is modulated in the transverse direction, and also arises in the study of Bose-Einstein Condensation (BEC) in a medium with a spatially dependent scattering length. In the nonlinear optics context, N = r(beam/)r(ms) denotes the ratio of beam width to microstructure characteristic scale. We study the profiles of the nonlinear bound states using a multiple scale (homogenization) expansion for N >> 1 (wide beams), a perturbation analysis for N << 1 (narrow beams) and numerical simulations for N = O(1). In the suberitical case p < 5, beams centered at local maxima of the microstructure are stable. Furthermore, beams centered at local minima of the microstructure are unstable to general (asymmetric) perturbations but stable relative to symmetric perturbations. In the critical case p = 5, a nonlinear microstructure can only stabilize narrow beams centered at a local maximum of the microstructure, provided that the microstructure also satisfies a certain local condition. Even in this case, the stability region is very small so that small (O(10(-2))) perturbations can destabilize the beam. Therefore, such beams are "mathematically" stable but "physically" unstable. (c) 2006 Elsevier B.V. All rights reserved.
引用
收藏
页码:31 / 57
页数:27
相关论文
共 67 条
[1]   Propagation of matter-wave solitons in periodic and random nonlinear potentials [J].
Abdullaev, FK ;
Garnier, J .
PHYSICAL REVIEW A, 2005, 72 (06)
[2]  
Abdullaev FK, 2005, INT J MOD PHYS B, V19, P3415
[3]  
Abdullaev FK, 2005, PHYS PART NUCLEI+, V36, pS213
[4]   Adiabatic compression of soliton matter waves [J].
Abdullaev, FK ;
Salerno, M .
JOURNAL OF PHYSICS B-ATOMIC MOLECULAR AND OPTICAL PHYSICS, 2003, 36 (13) :2851-2859
[5]   Wave dynamics in optically modulated waveguide arrays [J].
Ablowitz, MJ ;
Julien, K ;
Musslimani, ZH ;
Weinstein, MI .
PHYSICAL REVIEW E, 2005, 71 (05)
[6]   Spectral renormalization method for computing self-localized solutions to nonlinear systems [J].
Ablowitz, MJ ;
Musslimani, ZH .
OPTICS LETTERS, 2005, 30 (16) :2140-2142
[7]   Methods for discrete solitons in nonlinear lattices [J].
Ablowitz, MJ ;
Musslimani, ZH ;
Biondini, G .
PHYSICAL REVIEW E, 2002, 65 (02)
[8]   Discrete spatial solitons in a diffraction-managed nonlinear waveguide array: a unified approach [J].
Ablowitz, MJ ;
Musslimani, ZH .
PHYSICA D-NONLINEAR PHENOMENA, 2003, 184 (1-4) :276-303
[9]   Multiscale pulse dynamics in communication systems with strong dispersion management [J].
Ablowitz, MJ ;
Biondini, G .
OPTICS LETTERS, 1998, 23 (21) :1668-1670
[10]   ENERGY LOCALIZATION IN NONLINEAR FIBER ARRAYS - COLLAPSE-EFFECT COMPRESSOR [J].
ACEVES, AB ;
LUTHER, GG ;
DEANGELIS, C ;
RUBENCHIK, AM ;
TURITSYN, SK .
PHYSICAL REVIEW LETTERS, 1995, 75 (01) :73-76