Bound states of nonlinear Schrodinger equations with a periodic nonlinear microstructure

被引:101
作者
Fibich, G. [1 ]
Sivan, Y.
Weinstein, M. I.
机构
[1] Tel Aviv Univ, Sch Math Sci, IL-69978 Tel Aviv, Israel
[2] Tel Aviv Univ, Sch Phys & Astron, IL-69978 Tel Aviv, Israel
[3] Columbia Univ, Dept Appl Phys & Appl Math, New York, NY 10027 USA
基金
美国国家科学基金会;
关键词
microstructure; homogenization; instability; collapse; periodic potential; solitary waves; nonlinear waves; Bose-Einstein Condensation (BEC);
D O I
10.1016/j.physd.2006.03.009
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider nonlinear bound states of the nonlinear Schrodinger equation i partial derivative(z)phi (z, x) = -partial derivative(2)(x)phi - (1 + m(Nx)) vertical bar phi vertical bar (p-1) phi in the presence of a nonlinear periodic microstructure m(Nx). This equation models the propagation of laser beams in a medium whose nonlinear refractive index is modulated in the transverse direction, and also arises in the study of Bose-Einstein Condensation (BEC) in a medium with a spatially dependent scattering length. In the nonlinear optics context, N = r(beam/)r(ms) denotes the ratio of beam width to microstructure characteristic scale. We study the profiles of the nonlinear bound states using a multiple scale (homogenization) expansion for N >> 1 (wide beams), a perturbation analysis for N << 1 (narrow beams) and numerical simulations for N = O(1). In the suberitical case p < 5, beams centered at local maxima of the microstructure are stable. Furthermore, beams centered at local minima of the microstructure are unstable to general (asymmetric) perturbations but stable relative to symmetric perturbations. In the critical case p = 5, a nonlinear microstructure can only stabilize narrow beams centered at a local maximum of the microstructure, provided that the microstructure also satisfies a certain local condition. Even in this case, the stability region is very small so that small (O(10(-2))) perturbations can destabilize the beam. Therefore, such beams are "mathematically" stable but "physically" unstable. (c) 2006 Elsevier B.V. All rights reserved.
引用
收藏
页码:31 / 57
页数:27
相关论文
共 67 条
[41]  
KONOTOP V, 2005, DISSIPATIVE SOLITONS
[42]   Gap solitons in waveguide arrays [J].
Mandelik, D ;
Morandotti, R ;
Aitchison, JS ;
Silberberg, Y .
PHYSICAL REVIEW LETTERS, 2004, 92 (09) :093904-1
[43]  
Merle F, 1996, ANN I H POINCARE-PHY, V64, P33
[44]   Asymptotics for L(2) minimal blow-up solutions of critical nonlinear Schrodinger equation [J].
Merle, F .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 1996, 13 (05) :553-565
[45]   Stabilization of solitons of the multidimensional nonlinear Schrodinger equation:: matter-wave breathers [J].
Montesinos, GD ;
Pérez-García, VM ;
Torres, PJ .
PHYSICA D-NONLINEAR PHENOMENA, 2004, 191 (3-4) :193-210
[46]   Dynamics of discrete solitons in optical waveguide arrays [J].
Morandotti, R ;
Peschel, U ;
Aitchison, JS ;
Eisenberg, HS ;
Silberberg, Y .
PHYSICAL REVIEW LETTERS, 1999, 83 (14) :2726-2729
[47]   Self-trapping of light in a two-dimensional photonic lattice [J].
Musslimani, ZH ;
Yang, JA .
JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSICS, 2004, 21 (05) :973-981
[49]  
Pelinovsky DE, 2004, PHYS REV E, V70, DOI 10.1103/PhysRevE.70.036618
[50]   Averaging for solitons with nonlinearity management [J].
Pelinovsky, DE ;
Kevrekidis, PG ;
Frantzeskakis, DJ .
PHYSICAL REVIEW LETTERS, 2003, 91 (24)