A neutron crystallographic analysis of a rubredoxin mutant at 1.6 Å resolution

被引:32
作者
Chatake, T
Kurihara, K
Tanaka, I
Tsyba, I
Bau, R [1 ]
Jenney, FE
Adams, MWW
Niimura, N
机构
[1] Japan Atom Energy Res Inst, Adv Sci Res Ctr, Neutron Struct Biol Grp, Tokai, Ibaraki 3191195, Japan
[2] Univ So Calif, Dept Chem, Los Angeles, CA 90089 USA
[3] Univ Georgia, Dept Biochem, Athens, GA 30602 USA
[4] Ibaraki Univ, Dept Technol, Ibaraki 3168511, Japan
来源
ACTA CRYSTALLOGRAPHICA SECTION D-STRUCTURAL BIOLOGY | 2004年 / 60卷
关键词
D O I
10.1107/S090744490401176X
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
A neutron diffraction study has been carried out at 1.6 Angstrom resolution on a mutant rubredoxin from Pyrococcus furiosus using the BIX-3 single-crystal diffractometer at the JRR-3 reactor of the Japan Atomic Energy Research Institute. In order to study the unusual thermostability of rubredoxin from P. furiosus ( an organism that grows optimally at 373 K), the hydrogen-bonding patterns were compared between the wild-type protein and a 'triple-mutant' variant. In this mutant protein, three residues were changed (Trp3 --> Tyr3, Ile23 --> Val23, Leu32 --> Ile32) so that they are identical to those in a mesophilic rubredoxin from Clostridium pasteurianum. In the present study, some minor changes were found between the wild-type and mutant proteins in the hydrogen-bonding patterns of the Trp3/Tyr3 region. In this investigation, the H/D-exchange ratios in the protein were also studied. Because the target protein was soaked in D2O during the crystallization procedure, most of the N - H and O - H bonds have become deuterated, while essentially all of the C - H bonds have not. In particular, the H/D-exchange pattern of the N - H amide bonds of the protein backbone is of interest because it may contain some indirect information about the mechanism of unfolding of this small protein. The results are in broad agreement with those from solution NMR studies, which suggest that the backbone amide bonds near the four Cys residues of the FeS4 redox center are most resistant to H/D exchange. Finally, the detailed geometries of the water molecules of hydration around the rubredoxin molecule are also reported. The 1.6 A resolution of the present neutron structure determination has revealed a more detailed picture than previously available of some portions of the water structure, including ordered and disordered O - D bonds. Crystallographic details: space group P2(1)2(1)2(1) (orthorhombic), unit-cell parameters a = 34.48, b = 35.70, c = 43.16 Angstrom; final agreement factors R = 0.196 and R-free = 0.230 for 19 384 observed and 6548 unique neutron reflections collected at room temperature; crystal size 4 mm(3); a total of 423 non-H atoms, 290 H atoms and 88 D atoms were located in this study.
引用
收藏
页码:1364 / 1373
页数:10
相关论文
共 42 条
[21]   ANALYSIS OF SOLVENT STRUCTURE IN PROTEINS USING NEUTRON D2O-H2O SOLVENT MAPS - PATTERN OF PRIMARY AND SECONDARY HYDRATION OF TRYPSIN [J].
KOSSIAKOFF, AA ;
SINTCHAK, MD ;
SHPUNGIN, J ;
PRESTA, LG .
PROTEINS-STRUCTURE FUNCTION AND GENETICS, 1992, 12 (03) :223-236
[22]  
KURIHARA K, 2004, IN PRESS
[23]  
KURIHARA K, 2001, J PHYS SOC JPN, V70, P400
[24]   TRAITEMENT STATISTIQUE DES ERREURS DANS LA DETERMINATION DES STRUCTURES CRISTALLINES [J].
LUZZATI, V .
ACTA CRYSTALLOGRAPHICA, 1952, 5 (06) :802-810
[25]  
MAEDA M, 2001, J PHYS SOC JPN, V70, P403
[26]   CLONING, SEQUENCING AND EXPRESSION IN ESCHERICHIA-COLI OF THE RUBREDOXIN GENE FROM CLOSTRIDIUM-PASTEURIANUM [J].
MATHIEU, I ;
MEYER, J ;
MOULIS, JM .
BIOCHEMICAL JOURNAL, 1992, 285 :255-262
[27]   XtalView Xfit - A versatile program for manipulating atomic coordinates and electron density [J].
McRee, DE .
JOURNAL OF STRUCTURAL BIOLOGY, 1999, 125 (2-3) :156-165
[28]  
Nakasako M, 2001, CELL MOL BIOL, V47, P767
[29]   AMORE - AN AUTOMATED PACKAGE FOR MOLECULAR REPLACEMENT [J].
NAVAZA, J .
ACTA CRYSTALLOGRAPHICA SECTION A, 1994, 50 :157-163
[30]   Neutron Laue diffractometry with an imaging plate provides an effective data collection regime for neutron protein crystallography [J].
Niimura, N ;
Minezaki, Y ;
Nonaka, T ;
Castagna, JC ;
Cipriani, F ;
Hoghoj, P ;
Lehmann, MS ;
Wilkinson, C .
NATURE STRUCTURAL BIOLOGY, 1997, 4 (11) :909-914