Evolution of an antibiotic resistance enzyme constrained by stability and activity trade-offs

被引:384
作者
Wang, XJ [1 ]
Minasov, G [1 ]
Shoichet, BK [1 ]
机构
[1] Northwestern Univ, Sch Med, Dept Mol Pharmacol & Biol Chem, Chicago, IL 60611 USA
基金
美国国家科学基金会;
关键词
protein stability; TEM-1; beta-lactamase; antibiotic resistance; evolution;
D O I
10.1016/S0022-2836(02)00400-X
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Pressured by antibiotic use, resistance enzymes have been evolving new activities. Does such evolution have a cost? To investigate this question at the molecular level, clinically isolated mutants of the beta-lactamase TEM-1 were studied. When purified, mutant enzymes had increased activity against cephalosporin antibiotics but lost both thermodynamic stability and kinetic activity against their ancestral targets, penicillins. The X-ray crystallographic structures of three mutant enzymes were determined. These structures suggest that activity gain and stability loss is related to an enlarged active site cavity in the mutant enzymes. In several clinically isolated mutant enzymes, a secondary substitution is observed far from the active site (Met182 --> Thr). This substitution had little effect on enzyme activity but restored stability lost by substitutions near the active site. This regained stability conferred an advantage in vivo. This pattern of stability loss and restoration may be common in the evolution of new enzyme activity. (C) 2002 Elsevier Science Ltd. All rights reserved.
引用
收藏
页码:85 / 95
页数:11
相关论文
共 40 条
[1]  
Axe DD, 2000, J MOL BIOL, V301, P585, DOI 10.1006/jmbi.2000.3997
[2]   PROTEIN STABILITY CURVES [J].
BECKTEL, WJ ;
SCHELLMAN, JA .
BIOPOLYMERS, 1987, 26 (11) :1859-1877
[3]   Temperature-sensitive suppressor mutations of the Escherichia coli DNA gyrase B protein [J].
Blance, SJ ;
Williams, NL ;
Preston, ZA ;
Bishara, J ;
Smyth, MS ;
Maxwell, A .
PROTEIN SCIENCE, 2000, 9 (05) :1035-1037
[4]   Selection of naturally occurring extended-spectrum TEM β-lactamase variants by fluctuating β-lactam pressure [J].
Blazquez, J ;
Morosini, MI ;
Negri, MC ;
Baquero, F .
ANTIMICROBIAL AGENTS AND CHEMOTHERAPY, 2000, 44 (08) :2182-2184
[5]   Crystallography & NMR system:: A new software suite for macromolecular structure determination [J].
Brunger, AT ;
Adams, PD ;
Clore, GM ;
DeLano, WL ;
Gros, P ;
Grosse-Kunstleve, RW ;
Jiang, JS ;
Kuszewski, J ;
Nilges, M ;
Pannu, NS ;
Read, RJ ;
Rice, LM ;
Simonson, T ;
Warren, GL .
ACTA CRYSTALLOGRAPHICA SECTION D-BIOLOGICAL CRYSTALLOGRAPHY, 1998, 54 :905-921
[6]   Energetic, structural, and antimicrobial analyses of β-lactam side chain recognition by β-lactamases [J].
Caselli, E ;
Powers, RA ;
Blasczcak, LC ;
Wu, CYE ;
Prati, F ;
Shoichet, BK .
CHEMISTRY & BIOLOGY, 2001, 8 (01) :17-31
[7]   STRUCTURE OF A PHOSPHONATE-INHIBITED BETA-LACTAMASE - AN ANALOG OF THE TETRAHEDRAL TRANSITION-STATE INTERMEDIATE OF BETA-LACTAM HYDROLYSIS [J].
CHEN, CCH ;
RAHIL, J ;
PRATT, RF ;
HERZBERG, O .
JOURNAL OF MOLECULAR BIOLOGY, 1993, 234 (01) :165-178
[8]   IN-VIVO EMERGENCE OF HIV-1 VARIANTS RESISTANT TO MULTIPLE PROTEASE INHIBITORS [J].
CONDRA, JH ;
SCHLEIF, WA ;
BLAHY, OM ;
GABRYELSKI, LJ ;
GRAHAM, DJ ;
QUINTERO, JC ;
RHODES, A ;
ROBBINS, HL ;
ROTH, E ;
SHIVAPRAKASH, M ;
TITUS, D ;
YANG, T ;
TEPPLER, H ;
SQUIRES, KE ;
DEUTSCH, PJ ;
EMINI, EA .
NATURE, 1995, 374 (6522) :569-571
[9]   CATALYTIC MECHANISM OF ACTIVE-SITE SERINE BETA-LACTAMASES - ROLE OF THE CONSERVED HYDROXY GROUP OF THE LYS-THR(SER)-GLY TRIAD [J].
DUBUS, A ;
WILKIN, JM ;
RAQUET, X ;
NORMARK, S ;
FRERE, JM .
BIOCHEMICAL JOURNAL, 1994, 301 :485-494
[10]   Prediction of functionally important residues based solely on the computed energetics of protein structure [J].
Elcock, AH .
JOURNAL OF MOLECULAR BIOLOGY, 2001, 312 (04) :885-896