Thermal conductivity improvement of silicone elastomer with carbon nanotube loading

被引:201
作者
Liu, CH [1 ]
Huang, H
Wu, Y
Fan, SS
机构
[1] Tsinghua Univ, Tsinghua Foxconn Nanotechnol Res Ctr, Beijing 100084, Peoples R China
[2] Tsinghua Univ, Dept Phys, Beijing 100084, Peoples R China
关键词
D O I
10.1063/1.1756680
中图分类号
O59 [应用物理学];
学科分类号
摘要
Unpurified carbon nanotubes were introduced to silicone elastomer to investigate their effect on the thermal conductivity. Microstructure studies by a scanning electron microscope showed that the carbon nanotubes (CNTs) can be well dispersed in the matrix by the grinding method. No notable agglomerates or phase separation between the carbon and silicone matrix were observed, and the CNTs were individually in random orientation. The thermal conductivities of the composites were measured with the ASTM (American Society of Testing Materials) D5470 method. The thermal conductivities kappa were found to increase with the carbon amount. There was a 65% enhancement in kappa with 3.8 wt % CNT loading. The enhancement by equal loading of carbon black was found to be a little lower than that by the CNT loading. The composites loaded with CNTs displayed an abrupt increase in the electrical conductivity. (C) 2004 American Institute of Physics.
引用
收藏
页码:4248 / 4250
页数:3
相关论文
共 11 条
[1]   Unusually high thermal conductivity of carbon nanotubes [J].
Berber, S ;
Kwon, YK ;
Tománek, D .
PHYSICAL REVIEW LETTERS, 2000, 84 (20) :4613-4616
[2]   Carbon nanotube composites for thermal management [J].
Biercuk, MJ ;
Llaguno, MC ;
Radosavljevic, M ;
Hyun, JK ;
Johnson, AT ;
Fischer, JE .
APPLIED PHYSICS LETTERS, 2002, 80 (15) :2767-2769
[3]   Anomalous thermal conductivity enhancement in nanotube suspensions [J].
Choi, SUS ;
Zhang, ZG ;
Yu, W ;
Lockwood, FE ;
Grulke, EA .
APPLIED PHYSICS LETTERS, 2001, 79 (14) :2252-2254
[4]   Electrical and thermal transport properties of magnetically aligned single walt carbon nanotube films [J].
Hone, J ;
Llaguno, MC ;
Nemes, NM ;
Johnson, AT ;
Fischer, JE ;
Walters, DA ;
Casavant, MJ ;
Schmidt, J ;
Smalley, RE .
APPLIED PHYSICS LETTERS, 2000, 77 (05) :666-668
[5]   Thermal conductivity of single-walled carbon nanotubes [J].
Hone, J ;
Whitney, M ;
Piskoti, C ;
Zettl, A .
PHYSICAL REVIEW B, 1999, 59 (04) :R2514-R2516
[6]   Interfacial heat flow in carbon nanotube suspensions [J].
Huxtable, ST ;
Cahill, DG ;
Shenogin, S ;
Xue, LP ;
Ozisik, R ;
Barone, P ;
Usrey, M ;
Strano, MS ;
Siddons, G ;
Shim, M ;
Keblinski, P .
NATURE MATERIALS, 2003, 2 (11) :731-734
[7]   Thermal transport measurements of individual multiwalled nanotubes [J].
Kim, P ;
Shi, L ;
Majumdar, A ;
McEuen, PL .
PHYSICAL REVIEW LETTERS, 2001, 87 (21) :215502-1
[8]   A simple model for thermal conductivity of carbon nanotube-based composites [J].
Nan, CW ;
Shi, Z ;
Lin, Y .
CHEMICAL PHYSICS LETTERS, 2003, 375 (5-6) :666-669
[9]   Mesoscopic thermal and thermoelectric measurements of individual carbon nanotubes [J].
Small, JP ;
Shi, L ;
Kim, P .
SOLID STATE COMMUNICATIONS, 2003, 127 (02) :181-186
[10]   Nanofluids containing multiwalled carbon nanotubes and their enhanced thermal conductivities [J].
Xie, HQ ;
Lee, H ;
Youn, W ;
Choi, M .
JOURNAL OF APPLIED PHYSICS, 2003, 94 (08) :4967-4971