Replacing two conserved tyrosines of the EphB2 receptor with glutamic acid prevents binding of SH2 domains without abrogating kinase activity and biological responses

被引:102
作者
Zisch, AH [1 ]
Pazzagli, C [1 ]
Freeman, AL [1 ]
Schneller, M [1 ]
Hadman, M [1 ]
Smith, JW [1 ]
Ruoslahti, E [1 ]
Pasquale, EB [1 ]
机构
[1] Burnham Inst, La Jolla, CA 92037 USA
关键词
signaling pathways; tyrosine phosphorylation; actin cytoskeleton; cell adhesion; mitogen-activated protein kinases;
D O I
10.1038/sj.onc.1203304
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Eph receptor tyrosine kinases play key roles in pattern formation during embryonic development, but little is known about the mechanisms by which they elicit specific biological responses in cells. Here, we investigate the role of tyrosines 605 and 611 in the juxtamembrane region of EphB2, because they are conserved Eph receptor autophosphorylation sites and demonstrated binding sites for the SH2 domains of multiple signaling proteins. Mutation of tyrosines 605 and 611 to phenylalanine impaired EphB2 kinase activity, complicating analysis of their function as SH2 domain binding sites and their contribution to EphB2-mediated signaling. In contrast, mutation to the negatively charged glutamic acid disrupted SH2 domain binding without reducing EphB2 kinase activity. By using a panel of EphB2 mutants, we found that kinase activity is required for the changes in cell-matrix and cell-cell adhesion, cytoskeletal organization, and activation of mitogen-activated protein (MAP) kinases elicited by EphB2 in transiently transfected cells, Instead, the two juxtamembrane SH2 domain binding sites were dispensable for these effects. These results suggest that phosphorylation of tyrosines 605 and 611 is critical for EphB2-mediated cellular responses because it regulates EphB2 kinase activity.
引用
收藏
页码:177 / 187
页数:11
相关论文
共 75 条
[11]   JNK1 - A PROTEIN-KINASE STIMULATED BY UV-LIGHT AND HA-RAS THAT BINDS AND PHOSPHORYLATES THE C-JUN ACTIVATION DOMAIN [J].
DERIJARD, B ;
HIBI, M ;
WU, IH ;
BARRETT, T ;
SU, B ;
DENG, TL ;
KARIN, M ;
DAVIS, RJ .
CELL, 1994, 76 (06) :1025-1037
[12]   The Eph family in the patterning of neural development [J].
Drescher, U .
CURRENT BIOLOGY, 1997, 7 (12) :R799-R807
[13]   IN-VITRO GUIDANCE OF RETINAL GANGLION-CELL AXONS BY RAGS, A 25 KDA TECTAL PROTEIN RELATED TO LIGANDS FOR EPH RECEPTOR TYROSINE KINASES [J].
DRESCHER, U ;
KREMOSER, C ;
HANDWERKER, C ;
LOSCHINGER, J ;
NODA, M ;
BONHOEFFER, F .
CELL, 1995, 82 (03) :359-370
[14]  
Ellis C, 1996, ONCOGENE, V12, P1727
[15]   A PHOSPHATIDYLINOSITOL-3 KINASE BINDS TO PLATELET-DERIVED GROWTH-FACTOR RECEPTORS THROUGH A SPECIFIC RECEPTOR SEQUENCE CONTAINING PHOSPHOTYROSINE [J].
ESCOBEDO, JA ;
KAPLAN, DR ;
KAVANAUGH, WM ;
TURCK, CW ;
WILLIAMS, LT .
MOLECULAR AND CELLULAR BIOLOGY, 1991, 11 (02) :1125-1132
[16]   DISTINCT PHOSPHOTYROSINES ON A GROWTH-FACTOR RECEPTOR BIND TO SPECIFIC MOLECULES THAT MEDIATE DIFFERENT SIGNALING PATHWAYS [J].
FANTL, WJ ;
ESCOBEDO, JA ;
MARTIN, GA ;
TURCK, CW ;
DELROSARIO, M ;
MCCORMICK, F ;
WILLIAMS, LT .
CELL, 1992, 69 (03) :413-423
[17]   The ephrins and Eph receptors in neural development [J].
Flanagan, JG ;
Vanderhaeghen, P .
ANNUAL REVIEW OF NEUROSCIENCE, 1998, 21 :309-345
[18]  
GANDINO L, 1994, J BIOL CHEM, V269, P1815
[19]  
Giasson BI, 1997, J NEUROSCI, V17, P9466
[20]   Aberrant stress-induced phosphorylation of perikaryal neurofilaments [J].
Giasson, BI ;
Mushynski, WE .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1996, 271 (48) :30404-30409