Dynamics of K+ ion conduction through Kv1.2

被引:90
作者
Khalili-Araghi, Fatemeh [1 ]
Tajkhorshid, Emad
Schulten, Klaus
机构
[1] Univ Illinois, Beckman Inst, Urbana, IL 61801 USA
[2] Univ Illinois, Dept Phys, Urbana, IL 61801 USA
[3] Univ Illinois, Dept Biochem, Urbana, IL 61801 USA
关键词
D O I
10.1529/biophysj.106.091926
中图分类号
Q6 [生物物理学];
学科分类号
071011 ;
摘要
The crystallographic structure of a potassium channel, Kv1.2, in an open state makes it feasible to simulate entire K+ ion permeation events driven by a voltage bias and, thereby, elucidate the mechanism underlying ion conduction and selectivity of this type of channel. This Letter demonstrates that molecular dynamics simulations can provide movies of the overall conduction of K 1 ions through Kv1.2. As suggested earlier, the conduction is concerted in the selectivity filter, involving 2-3 ions residing mainly at sites identified previously by crystallography and modeling. The simulations reveal, however, the jumps of ions between these sites and identify the sequence of multi-ion configurations involved in permeation.
引用
收藏
页码:L2 / L4
页数:3
相关论文
共 13 条
[1]   Ion permeation mechanism of the potassium channel [J].
Åqvist, J ;
Luzhkov, V .
NATURE, 2000, 404 (6780) :881-884
[2]   Molecular dynamics of the KcsA K+ channel in a bilayer membrane [J].
Bernèche, S ;
Roux, B .
BIOPHYSICAL JOURNAL, 2000, 78 (06) :2900-2917
[3]   A gate in the selectivity filter of potassium channels [J].
Bernèche, S ;
Roux, BI .
STRUCTURE, 2005, 13 (04) :591-600
[4]   Energetics of ion conduction through the K+ channel [J].
Bernèche, S ;
Roux, B .
NATURE, 2001, 414 (6859) :73-77
[5]   A microscopic view of ion conduction through the K+ channel [J].
Bernèche, S ;
Roux, B .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2003, 100 (15) :8644-8648
[6]   Filter flexibility in a mammalian K channel: Models and simulations of Kir6.2 mutants [J].
Capener, CE ;
Proks, P ;
Ashcroft, FM ;
Sansom, MSP .
BIOPHYSICAL JOURNAL, 2003, 84 (04) :2345-2356
[7]   Filter flexibility and distortion in a bacterial inward rectifier K+ channel:: Simulation studies of KirBac1.1 [J].
Domene, C ;
Grottesi, A ;
Sansom, MSP .
BIOPHYSICAL JOURNAL, 2004, 87 (01) :256-267
[8]   THE POTASSIUM PERMEABILITY OF A GIANT NERVE FIBRE [J].
HODGKIN, AL ;
KEYNES, RD .
JOURNAL OF PHYSIOLOGY-LONDON, 1955, 128 (01) :61-88
[9]   Crystal structure of a mammalian voltage-dependent Shaker family K+ channel [J].
Long, SB ;
Campbell, EB ;
MacKinnon, R .
SCIENCE, 2005, 309 (5736) :897-903
[10]   Control of ion selectivity in potassium channels by electrostatic and dynamic properties of carbonyl ligands [J].
Noskov, SY ;
Bernèche, S ;
Roux, B .
NATURE, 2004, 431 (7010) :830-834