Contextual guidance of eye movements and attention in real-world scenes: The role of global features in object search

被引:1187
作者
Torralba, Antonio
Oliva, Aude
Castelhano, Monica S.
Henderson, John M.
机构
[1] MIT, Comp Sci & Artificial Intelligence LAb, Stata Ctr, Cambridge, MA 02139 USA
[2] MIT, Dept Brain & Cognit Sci, Cambridge, MA 02139 USA
[3] Univ Massachusetts, Dept Psychol, Amherst, MA 01003 USA
[4] Univ Edinburgh, Sch Philosophy Psychol & Language Sci, Edinburgh, Midlothian, Scotland
关键词
eye movements; visual search; context; global feature; Bayesian model;
D O I
10.1037/0033-295X.113.4.766
中图分类号
B84 [心理学];
学科分类号
04 ; 0402 ;
摘要
Many experiments have shown that the human visual system makes extensive use of contextual information for facilitating object search in natural scenes. However, the question of how to formally model contextual influences is still open. On the basis of a Bayesian framework, the authors present an original approach of attentional guidance by global scene context. The model comprises 2 parallel pathways; one pathway computes local features (saliency) and the other computes global (scene-centered) features. The contextual guidance model of attention combines bottom-up saliency, scene context, and top-down mechanisms at an early stage of visual processing and predicts the image regions likely to be fixated by human observers performing natural search tasks in real-world scenes. (PsycINFO Database Record (c) 2006 APA, all rights reserved).
引用
收藏
页码:766 / 786
页数:21
相关论文
共 118 条
[101]   Statistics of natural image categories [J].
Torralba, A ;
Oliva, A .
NETWORK-COMPUTATION IN NEURAL SYSTEMS, 2003, 14 (03) :391-412
[102]  
Torralba A, 2004, PROC CVPR IEEE, P762
[103]   Modeling global scene factors in attention [J].
Torralba, A .
JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 2003, 20 (07) :1407-1418
[104]   Contextual priming for object detection [J].
Torralba, A .
INTERNATIONAL JOURNAL OF COMPUTER VISION, 2003, 53 (02) :169-191
[105]   Depth estimation from image structure [J].
Torralba, A ;
Oliva, A .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2002, 24 (09) :1226-1238
[106]  
TORRALBA A, 2005, ADV NEURAL INFORM PR, V17, P1401
[107]   FEATURE-INTEGRATION THEORY OF ATTENTION [J].
TREISMAN, AM ;
GELADE, G .
COGNITIVE PSYCHOLOGY, 1980, 12 (01) :97-136
[108]   MODELING VISUAL-ATTENTION VIA SELECTIVE TUNING [J].
TSOTSOS, JK ;
CULHANE, SM ;
WAI, WYK ;
LAI, YH ;
DAVIS, N ;
NUFLO, F .
ARTIFICIAL INTELLIGENCE, 1995, 78 (1-2) :507-545
[109]   Visual features of intermediate complexity and their use in classification [J].
Ullman, S ;
Vidal-Naquet, M ;
Sali, E .
NATURE NEUROSCIENCE, 2002, 5 (07) :682-687
[110]   On image classification: City images vs. landscapes [J].
Vailaya, A ;
Jain, A ;
Zhang, HJ .
PATTERN RECOGNITION, 1998, 31 (12) :1921-1935