Enhanced mtDNA repair capacity protects pulmonary artery endothelial cells from oxidant-mediated death

被引:68
作者
Dobson, AW
Grishko, V
LeDoux, SP
Kelley, MR
Wilson, GL
Gillespie, MN [1 ]
机构
[1] Univ S Alabama, Coll Med, Dept Pharmacol, Mobile, AL 36688 USA
[2] Univ S Alabama, Coll Med, Dept Cell Biol & Neurosci, Mobile, AL 36688 USA
[3] Indiana Univ, Sch Med, Wells Ctr Pediat Res, Indianapolis, IN 46202 USA
关键词
mitochondrial deoxyribonucleic acid; xanthine oxidase; Ogg1; cytotoxicity;
D O I
10.1152/ajplung.00443.2001
中图分类号
Q4 [生理学];
学科分类号
071003 ;
摘要
In rat cultured pulmonary arterial (PA), microvascular, and venous endothelial cells (ECs), the rate of mitochondrial (mt) DNA repair is predictive of the severity of xanthine oxidase (XO)-induced mtDNA damage and the sensitivity to XO-mediated cell death. To examine the importance of mtDNA damage and repair more directly, we determined the impact of mitochondrial overexpression of the DNA repair enzyme, Ogg1, on XO-induced mtDNA damage and cell death in PAECs. PAECs were transiently transfected with an Ogg1-mitochondrial targeting sequence construct. Mitochondria-selective overexpression of the transgene product was confirmed microscopically by the observation that immunoreactive Ogg1 colocalized with a mitochondria-specific tracer and, with an oligonucleotide cleavage assay, by a selective enhancement of mitochondrial Ogg1 activity. Overexpression of Ogg1 protected against both XO-induced mtDNA damage, determined by quantitative Southern analysis, and cell death as assessed by trypan blue exclusion and MTS assays. These findings show that mtDNA damage is a direct cause of cell death in XO-treated PAECs.
引用
收藏
页码:L205 / L210
页数:6
相关论文
共 22 条
  • [1] Hydrogen peroxide- and peroxynitrite-induced mitochondrial DNA damage and dysfunction in vascular endothelial and smooth muscle cells
    Ballinger, SW
    Patterson, C
    Yan, CN
    Doan, R
    Burow, DL
    Young, CG
    Yakes, FM
    Van Houten, B
    Ballinger, CA
    Freeman, BA
    Runge, MS
    [J]. CIRCULATION RESEARCH, 2000, 86 (09) : 960 - 966
  • [2] DNA-REPAIR IN AN ACTIVE GENE - REMOVAL OF PYRIMIDINE DIMERS FROM THE DHFR GENE OF CHO CELLS IS MUCH MORE EFFICIENT THAN IN THE GENOME OVERALL
    BOHR, VA
    SMITH, CA
    OKUMOTO, DS
    HANAWALT, PC
    [J]. CELL, 1985, 40 (02) : 359 - 369
  • [3] BIOENERGETIC AND OXIDATIVE STRESS IN NEURODEGENERATIVE DISEASES
    BOWLING, AC
    BEAL, MF
    [J]. LIFE SCIENCES, 1995, 56 (14) : 1151 - 1171
  • [4] BRIGHAM KL, 1990, EUR RESPIR J, V3, pS482
  • [5] OXYGEN RADICALS - AN IMPORTANT MEDIATOR OF SEPSIS AND SEPTIC SHOCK
    BRIGHAM, KL
    [J]. KLINISCHE WOCHENSCHRIFT, 1991, 69 (21-23): : 1004 - 1008
  • [6] Cells depleted of mitochondrial DNA (ρ0) yield insight into physiological mechanisms
    Chandel, NS
    Schumacker, PT
    [J]. FEBS LETTERS, 1999, 454 (03) : 173 - 176
  • [7] DETECTION OF A SPECIFIC MITOCHONDRIAL-DNA DELETION IN TISSUES OF OLDER HUMANS
    CORTOPASSI, GA
    ARNHEIM, N
    [J]. NUCLEIC ACIDS RESEARCH, 1990, 18 (23) : 6927 - 6933
  • [8] Rac1 inhibits TNF-α-induced endothelial cell apoptosis:: dual regulation by reactive oxygen species
    Deshpande, SS
    Angkeow, P
    Kuang, JP
    Ozaki, M
    Irani, K
    [J]. FASEB JOURNAL, 2000, 14 (12) : 1705 - 1714
  • [9] Enhanced mitochondrial DNA repair and cellular survival after oxidative stress by targeting the human 8-oxoguanine glycosylase repair enzyme to mitochondria
    Dobson, AW
    Xu, Y
    Kelley, MR
    LeDoux, SP
    Wilson, GL
    [J]. JOURNAL OF BIOLOGICAL CHEMISTRY, 2000, 275 (48) : 37518 - 37523
  • [10] Hydrogen peroxide-induced apoptosis is CD95-independent, requires the release of mitochondria-derived reactive oxygen species and the activation of NF-κB
    Dumont, A
    Hehner, SP
    Hofmann, TG
    Ueffing, M
    Dröge, W
    Schmitz, ML
    [J]. ONCOGENE, 1999, 18 (03) : 747 - 757