Application of biotechnology in breeding lentil for resistance to biotic and abiotic stress

被引:61
作者
Muehlbauer, FJ
Cho, S
Sarker, A
McPhee, KE
Coyne, CJ
Rajesh, PN
Ford, R
机构
[1] Washington State Univ, USDA ARS, Pullman, WA 99164 USA
[2] Univ Minnesota, Dept Agron & Plant Genet, St Paul, MN 55108 USA
[3] Int Ctr Agr Res Dry Areas, Germplasm Program, Aleppo, Syria
[4] Univ Melbourne, Sch Agr & Food Syst, Melbourne, Vic 3002, Australia
关键词
genetic mapping; genomics; Lens culinaris; marker-assisted-selection; synteny;
D O I
10.1007/s10681-006-7108-0
中图分类号
S3 [农学(农艺学)];
学科分类号
0901 ;
摘要
Lentil is a self-pollinating diploid (2n = 14 chromosomes) annual cool season legume crop that is produced throughout the world and is highly valued as a high protein food. Several abiotic stresses are important to lentil yields world wide and include drought, heat, salt susceptibility and iron deficiency. The biotic stresses are numerous and include: susceptibility to Ascochyta blight, caused by Ascochyta lentis; Anthracnose, caused by Colletotrichum truncatum; Fusarium wilt, caused by Fusarium oxysporum; Sclerotinia white mold, caused by Sclerotinia sclerotiorum; rust, caused by Uromyces fabae; and numerous aphid transmitted viruses. Lentil is also highly susceptible to several species of Orabanche prevalent in the Mediterranean region, for which there does not appear to be much resistance in the germplasm. Plant breeders and geneticists have addressed these stresses by identifying resistant/tolerant germplasm, determining the genetics involved and the genetic map positions of the resistant genes. To this end progress has been made in mapping the lentil genome and several genetic maps are available that eventually will lead to the development of a consensus map for lentil. Marker density has been limited in the published genetic maps and there is a distinct lack of co-dominant markers that would facilitate comparisons of the available genetic maps and efficient identification of markers closely linked to genes of interest. Molecular breeding of lentil for disease resistance genes using marker assisted selection, particularly for resistance to Ascochyta blight and Anthracnose, is underway in Australia and Canada and promising results have been obtained. Comparative genomics and synteny analyses with closely related legumes promises to further advance the knowledge of the lentil genome and provide lentil breeders with additional genes and selectable markers for use in marker assisted selection. Genomic tools such as macro and micro arrays, reverse genetics and genetic transformation are emerging technologies that may eventually be available for use in lentil crop improvement.
引用
收藏
页码:149 / 165
页数:17
相关论文
共 145 条
[1]   Purification and characterization of two voltage-dependent anion channel isoforms from plant seeds [J].
Abrecht, H ;
Wattiez, R ;
Ruysschaert, JM ;
Homblé, F .
PLANT PHYSIOLOGY, 2000, 124 (03) :1181-1190
[2]   Virulence of Ascochyta fabae f sp. lentis on lentil [J].
Ahmed, S ;
Morrall, RAA ;
Sheard, JW .
CANADIAN JOURNAL OF PLANT PATHOLOGY-REVUE CANADIENNE DE PHYTOPATHOLOGIE, 1996, 18 (04) :354-361
[3]   Field reactions of lentil lines and cultivars to isolates of Ascochyta fabae f sp. lentis [J].
Ahmed, S ;
Morrall, RAA .
CANADIAN JOURNAL OF PLANT PATHOLOGY-REVUE CANADIENNE DE PHYTOPATHOLOGIE, 1996, 18 (04) :362-369
[4]  
Andrahennadi C. P., 1996, Lens Newsletter, V23, P5
[5]  
[Anonymous], 1981, LENS NEWSL
[6]   SCREENING OF LOCAL - EXOTIC ACCESSIONS OF LENTIL (LENS-CULINARIS MEDIC) FOR SALT TOLERANCE AT 2 GROWTH-STAGES [J].
ASHRAF, M ;
WAHEED, A .
PLANT AND SOIL, 1990, 128 (02) :167-176
[7]   RESPONSES OF SOME LOCAL EXOTIC ACCESSIONS OF LENTIL (LENS-CULINARIS MEDIC) TO SALT STRESS [J].
ASHRAF, M ;
WAHEED, A .
JOURNAL OF AGRONOMY AND CROP SCIENCE, 1993, 170 (02) :103-112
[8]   Visualization of differential gene expression using a novel method of RNA fingerprinting based on AFLP: Analysis of gene expression during potato tuber development [J].
Bachem, CWB ;
vanderHoeven, RS ;
deBruijn, SM ;
Vreugdenhil, D ;
Zabeau, M ;
Visser, RGF .
PLANT JOURNAL, 1996, 9 (05) :745-753
[9]   AN EXTENDED MAP OF THE SUGAR-BEET GENOME CONTAINING RFLP AND RAPD LOCI [J].
BARZEN, E ;
MECHELKE, W ;
RITTER, E ;
SCHULTEKAPPERT, E ;
SALAMINI, F .
THEORETICAL AND APPLIED GENETICS, 1995, 90 (02) :189-193
[10]   Cross-species microarray transcript profiling reveals high constitutive expression of metal homeostasis genes in shoots of the zinc hyperaccumulator Arabidopsis halleri [J].
Becher, M ;
Talke, IN ;
Krall, L ;
Krämer, U .
PLANT JOURNAL, 2004, 37 (02) :251-268