Design of 4D treatment planning target volumes

被引:161
作者
Rietzel, Eike
Liu, Arthur K.
Doppke, Karen P.
Wolfgang, John A.
Chen, Aileen B.
Chen, George T. Y.
Choi, Noah C.
机构
[1] Harvard Univ, Massachusetts Gen Hosp, Sch Med, NE Proton Therapy Ctr,Dept Radiat Oncol, Boston, MA 02114 USA
[2] Gesell Schwerionenforsch mbH, Biophys Abt, Darmstadt, Germany
来源
INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS | 2006年 / 66卷 / 01期
关键词
four-dimensional computed tomography; four-dimensional treatment planning; treatment planning; target volumes; organ motion; LUNG-TUMOR MOTION; 3-DIMENSIONAL CONFORMAL RADIOTHERAPY; 4-DIMENSIONAL COMPUTED-TOMOGRAPHY; MULTIPLE CT SCANS; RESPIRATORY MOTION; ORGAN MOTION; CANCER; ARTIFACTS; MOVEMENT; MOBILITY;
D O I
10.1016/j.ijrobp.2006.05.024
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Purpose: When using non-patient-specific treatment planning margins, respiratory motion may lead to geometric miss of the target while unnecessarily irradiating normal tissue. Imaging different respiratory states of a patient allows patient-specific target design. We used four-dimensional computed tomography (4DCT) to characterize tumor motion and create treatment volumes in 10 patients with lung cancer. These were compared with standard treatment volumes. Methods and Materials: Four-dimensional CT and free breathing helical CT data of 10 patients were acquired. Gross target volumes (GTV) were delineated on the helical scan as well as on each phase of the 4D data. Composite GTVs were defined on 4DCT. Planning target volumes (PTV) including clinical target volume, internal margin (IM), and setup margin were generated. 4DPTVs with different IMs and standard PTVs were compared by computing centroid positions, volumes, volumetric overlap, and bounding boxes. Results: Four-dimensional PTVs and conventional PTVs differed in volume and centroid positions. Overlap between 4DPTVs generated from two extreme tumor positions only compared with 10 respiratory phases was 93.7%. Comparing PTVs with margins of 15 mm (IM 5 mm) on composite 4D target volumes to PTVs with 20 mm (IM 10 mm) on helical CT data resulted in a decrease in target volume sizes by 23% on average. Conclusion: With patient-specific characterization of tumor motion, it should be possible to decrease internal margins. Patient-specific treatment volumes can be generated using extreme tumor positions on 4DCT. To date, more than 150 patients have been treated using 4D target design. (c) 2006 Elsevier Inc.
引用
收藏
页码:287 / 295
页数:9
相关论文
共 39 条
[1]   Evaluation of the influence of breathing on the movement and modeling of lung tumors [J].
Allen, AM ;
Siracuse, KM ;
Hayman, JA ;
Balter, JM .
INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS, 2004, 58 (04) :1251-1257
[2]   Target volume definition for upper abdominal irradiation using CT scans obtained during inhale and exhale phases [J].
Aruga, T ;
Itami, J ;
Aruga, M ;
Nakajima, K ;
Shibata, K ;
Nojo, T ;
Yasuda, S ;
Uno, T ;
Hara, R ;
Isobe, K ;
Machida, N ;
Ito, H .
INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS, 2000, 48 (02) :465-469
[3]   Improvement of CT-based treatment-planning models of abdominal targets using static exhale imaging [J].
Balter, JM ;
Lam, KL ;
McGinn, CJ ;
Lawrence, TS ;
Ten Haken, RK .
INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS, 1998, 41 (04) :939-943
[4]   Uncertainties in CT-based radiation therapy treatment planning associated with patient breathing [J].
Balter, JM ;
TenHaken, RK ;
Lawrence, TS ;
Lam, KL ;
Robertson, JM .
INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS, 1996, 36 (01) :167-174
[5]   Effects of motion on the total dose distribution [J].
Bortfeld, T ;
Jiang, SB ;
Rietzel, E .
SEMINARS IN RADIATION ONCOLOGY, 2004, 14 (01) :41-51
[6]   Artifacts in computed tomography scanning of moving objects [J].
Chen, GTY ;
Kung, JH ;
Beaudette, KP .
SEMINARS IN RADIATION ONCOLOGY, 2004, 14 (01) :19-26
[7]   Are multiple CT scans required for planning curative radiotherapy in lung tumors of the lower lobe? [J].
De Koste, JRV ;
Lagerwaard, FJ ;
de Boer, HCJ ;
Nijssen-Visser, MR ;
Senan, S .
INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS, 2003, 55 (05) :1394-1399
[8]   Tumor location cannot predict the mobility of lung tumors: A 3D analysis of data generated from multiple CT scans [J].
de Koste, JRV ;
Lagerwaard, FJ ;
Nijssen-Visser, MRJ ;
Graveland, WJ ;
Senan, S .
INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS, 2003, 56 (02) :348-354
[9]   What margins should be added to the clinical target volume in radiotherapy treatment planning for lung cancer? [J].
Ekberg, L ;
Holmberg, O ;
Wittgren, L ;
Bjelkengren, G ;
Landberg, T .
RADIOTHERAPY AND ONCOLOGY, 1998, 48 (01) :71-77
[10]   The effect of breathing and set-up errors on the cumulative dose to a lung tumor [J].
Engelsmann, M ;
Damen, EMF ;
De Jaeger, K ;
van Ingen, KM ;
Mijnheer, BJ .
RADIOTHERAPY AND ONCOLOGY, 2001, 60 (01) :95-105