Device model for graphene bilayer field-effect transistor

被引:37
作者
Ryzhii, V. [1 ,2 ]
Ryzhii, M. [1 ,2 ]
Satou, A. [1 ,2 ]
Otsuji, T. [2 ,3 ]
Kirova, N. [4 ]
机构
[1] Univ Aizu, Computat Nanoelect Lab, Aizu Wakamatsu, Fukushima 9658580, Japan
[2] Japan Sci & Technol Agcy, CREST, Tokyo 1070075, Japan
[3] Tohoku Univ, Elect Commun Res Inst, Sendai, Miyagi 9808577, Japan
[4] Univ Paris 11, CNRS, UMR 8502, Phys Solides Lab, F-91405 Orsay, France
基金
日本科学技术振兴机构;
关键词
field effect transistors; graphene; molecular electronics; TRANSPORT; GAS;
D O I
10.1063/1.3131686
中图分类号
O59 [应用物理学];
学科分类号
摘要
We present an analytical device model for a graphene bilayer field-effect transistor (GBL-FET) with a graphene bilayer as a channel and with back and top gates. The model accounts for the dependences of the electron and hole Fermi energies as well as energy gap in different sections of the channel on the bias back-gate and top-gate voltages. Using this model, we calculate the dc and ac source-drain currents and the transconductance of GBL-FETs with both ballistic and collision dominated electron transport as functions of structural parameters, the bias back-gate and top-gate voltages, and the signal frequency. It is shown that there are two threshold voltages, V-th,V-1 and V-th,V-2, so that the dc current versus the top-gate voltage relation markedly changes depending on whether the section of the channel beneath the top gate (gated section) is filled with electrons, depleted, or filled with holes. The electron scattering leads to a decrease in the dc and ac currents and transconductances, whereas it weakly affects the threshold frequency. As demonstrated, the transient recharging of the gated section by holes can pronouncedly influence the ac transconductance resulting in its nonmonotonic frequency dependence with a maximum at fairly high frequencies.
引用
收藏
页数:9
相关论文
共 38 条
[1]  
ANCONA G, 2008, INT C SEM PROC UNPUB, P169
[2]   Ultrathin epitaxial graphite: 2D electron gas properties and a route toward graphene-based nanoelectronics [J].
Berger, C ;
Song, ZM ;
Li, TB ;
Li, XB ;
Ogbazghi, AY ;
Feng, R ;
Dai, ZT ;
Marchenkov, AN ;
Conrad, EH ;
First, PN ;
de Heer, WA .
JOURNAL OF PHYSICAL CHEMISTRY B, 2004, 108 (52) :19912-19916
[3]   Biased bilayer graphene: Semiconductor with a gap tunable by the electric field effect [J].
Castro, Eduardo V. ;
Novoselov, K. S. ;
Morozov, S. V. ;
Peres, N. M. R. ;
Dos Santos, J. M. B. Lopes ;
Nilsson, Johan ;
Guinea, F. ;
Geim, A. K. ;
Castro Neto, A. H. .
PHYSICAL REVIEW LETTERS, 2007, 99 (21)
[4]   Selective transmission of Dirac electrons and ballistic magnetoresistance of n-p junctions in graphene [J].
Cheianov, Vadim V. ;
Fal'ko, Vladimir I. .
PHYSICAL REVIEW B, 2006, 74 (04)
[5]   Graphene nano-ribbon electronics [J].
Chen, Zhihong ;
Lin, Yu-Ming ;
Rooks, Michael J. ;
Avouris, Phaedon .
PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES, 2007, 40 (02) :228-232
[6]   Unusual field and temperature dependence of the Hall effect in graphene [J].
Falkovsky, L. A. .
PHYSICAL REVIEW B, 2007, 75 (03)
[7]   Simulation of graphene nanoribbon field-effect transistors [J].
Fiori, Gianluca ;
Iannaccone, Giuseppe .
IEEE ELECTRON DEVICE LETTERS, 2007, 28 (08) :760-762
[8]   The rise of graphene [J].
Geim, A. K. ;
Novoselov, K. S. .
NATURE MATERIALS, 2007, 6 (03) :183-191
[9]   Quasi-Ballistic Transport in Nanowire Field-Effect Transistors [J].
Gnani, Elena ;
Gnudi, Antonio ;
Reggiani, Susanna ;
Baccarani, Giorgio .
IEEE TRANSACTIONS ON ELECTRON DEVICES, 2008, 55 (11) :2918-2930
[10]   Ultrathin HfO2 films grown on silicon by atomic layer deposition for advanced gate dielectrics applications [J].
Gusev, EP ;
Cabral, C ;
Copel, M ;
D'Emic, C ;
Gribelyuk, M .
MICROELECTRONIC ENGINEERING, 2003, 69 (2-4) :145-151