LiMnPO4 as an Advanced Cathode Material for Rechargeable Lithium Batteries

被引:264
作者
Martha, S. K. [1 ]
Markovsky, B. [1 ]
Grinblat, J. [1 ]
Gofer, Y. [1 ]
Haik, O. [1 ]
Zinigrad, E. [1 ]
Aurbach, D. [1 ]
Drezen, T. [2 ]
Wang, D. [2 ]
Deghenghi, G. [2 ]
Exnar, I. [2 ]
机构
[1] Bar Ilan Univ, Dept Chem, IL-52900 Ramat Gan, Israel
[2] Ecole Polytech Fed Lausanne, PSE B, High Power Lithium SA, CH-1015 Lausanne, Switzerland
基金
以色列科学基金会;
关键词
ELECTROCHEMICAL PERFORMANCE; INTERCALATION PROCESSES; PHOSPHO-OLIVINES; PARTICLE-SIZE; LIXMPO4; M; ELECTROLYTE; INTERFACE; STABILITY; KEY; FE;
D O I
10.1149/1.3125765
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
LiMnPO4 nanoparticles synthesized by the polyol method were examined as a cathode material for advanced Li-ion batteries. The structure, surface morphology, and performance were characterized by X-ray diffraction, high resolution scanning electron microscopy, high resolution transmission electron microscopy, Raman, Fourier transform IR, and photoelectron spectroscopies, and standard electrochemical techniques. A stable reversible capacity up to 145 mAh g(-1) could be measured at discharge potentials > 4 V vs Li/Li+, with a reasonable capacity retention during prolonged charge/discharge cycling. The rate capability of the LiMnPO4 electrodes studied herein was higher than that of LiNi0.5Mn0.5O2 and LiNi0.8Co0.15Al0.05O2 (NCA) in similar experiments and measurements. The active mass studied herein seems to be the least surface reactive in alkyl carbonate/LiPF6 solutions. We attribute the low surface activity of this material, compared to the lithiated transition-metal oxides that are examined and used as cathode materials for Li-ion batteries, to the relatively low basicity and nucleophilicity of the oxygen atoms in the olivine compounds. The thermal stability of the LiMnPO4 material in solutions (measured by differential scanning calorimetry) is much higher compared to that of transition-metal oxide cathodes. This is demonstrated herein by a comparison with NCA electrodes. (C) 2009 The Electrochemical Society. [DOI: 10.1149/1.3125765] All rights reserved.
引用
收藏
页码:A541 / A552
页数:12
相关论文
共 42 条
  • [1] Lithium-ion transfer at the interface between lithium-ion conductive ceramic electrolyte and liquid electrolyte - A key to enhancing the rate capability of lithium-ion batteries
    Abe, T
    Sagane, F
    Ohtsuka, M
    Iriyama, Y
    Ogumi, Z
    [J]. JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2005, 152 (11) : A2151 - A2154
  • [2] The source of first-cycle capacity loss in LiFePO4
    Andersson, AS
    Thomas, JO
    [J]. JOURNAL OF POWER SOURCES, 2001, 97-8 : 498 - 502
  • [3] Common electroanalytical behavior of Li intercalation processes into graphite and transition metal oxides
    Aurbach, D
    Levi, MD
    Levi, E
    Teller, H
    Markovsky, B
    Salitra, G
    Heider, U
    Heider, L
    [J]. JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1998, 145 (09) : 3024 - 3034
  • [4] A review on the solid-state ionics of electrochemical intercalation processes: How to interpret properly their electrochemical response
    Aurbach, Doron
    Levi, Milchail D.
    Levi, Elena
    [J]. SOLID STATE IONICS, 2008, 179 (21-26) : 742 - 751
  • [5] Review on electrode-electrolyte solution interactions, related to cathode materials for Li-ion batteries
    Aurbach, Doron
    Markovsky, Boris
    Salitra, Gregory
    Markevich, Elena
    Talyossef, Yossi
    Koltypin, Maxim
    Nazar, Linda
    Ellis, Brian
    Kovacheva, Daniella
    [J]. JOURNAL OF POWER SOURCES, 2007, 165 (02) : 491 - 499
  • [6] Synthesis and electrochemical analysis of vapor-deposited carbon-coated LiFePO4
    Belharouak, I
    Johnson, C
    Amine, K
    [J]. ELECTROCHEMISTRY COMMUNICATIONS, 2005, 7 (10) : 983 - 988
  • [7] Precursor-based synthesis and electrochemical performance of LiMnPO4
    Bramnik, Natalia N.
    Ehrenberg, Helmut
    [J]. JOURNAL OF ALLOYS AND COMPOUNDS, 2008, 464 (1-2) : 259 - 264
  • [8] Reducing carbon in LiFePO4/C composite electrodes to maximize specific energy, volumetric energy, and tap density
    Chen, ZH
    Dahn, JR
    [J]. JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2002, 149 (09) : A1184 - A1189
  • [9] Electronically conductive phospho-olivines as lithium storage electrodes
    Chung, SY
    Bloking, JT
    Chiang, YM
    [J]. NATURE MATERIALS, 2002, 1 (02) : 123 - 128
  • [10] One-step low-temperature route for the preparation of electrochemically active LiMnPO4 powders
    Delacourt, C
    Poizot, P
    Morcrette, M
    Tarascon, JM
    Masquelier, C
    [J]. CHEMISTRY OF MATERIALS, 2004, 16 (01) : 93 - 99