The yeast scaffold proteins Isu1p and Isu2p are required inside mitochondria for maturation of cytosolic Fe/S proteins

被引:100
作者
Gerber, J [1 ]
Neumann, K [1 ]
Prohl, C [1 ]
Mühlenhoff, U [1 ]
Lill, R [1 ]
机构
[1] Univ Marburg, Inst Zytobiol & Zytopathol, D-35033 Marburg, Germany
关键词
D O I
10.1128/MCB.24.11.4848-4857.2004
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Iron-sulfur (Fe/S) proteins are located in mitochondria, cytosol, and nucleus. Mitochondrial Fe/S proteins are matured by the iron-sulfur cluster (ISC) assembly machinery. Little is known about the formation of Fe/S proteins in the cytosol and nucleus. A function of mitochondria in cytosolic Fe/S protein maturation has been noted, but small amounts of some ISC components have been detected outside mitochondria. Here, we studied the highly conserved yeast proteins Isu1p and Isu2p, which provide a scaffold for Fe/S cluster synthesis. We asked whether the Isu proteins are needed for biosynthesis of cytosolic Fe/S clusters and in which subcellular compartment the Isu proteins are required. The Isu proteins were found to be essential for de novo biosynthesis of both mitochondrial and cytosolic Fe/S proteins. Several lines of evidence indicate that Isu1p and Isu2p have to be located inside mitochondria in order to perform their function in cytosolic Fe/S protein maturation. We were unable to mislocalize Isu1p to the cytosol due to the presence of multiple, independent mitochondrial targeting signals in this protein. Further, the bacterial homologue IscU and the human Isu proteins (partially) complemented the defects of yeast Isu protein-depleted cells in growth rate, Fe/S protein biogenesis, and iron homeostasis, yet only after targeting to mitochondria. Together, our data suggest that the Isu proteins need to be localized in mitochondria to fulfill their functional requirement in Fe/S protein maturation in the cytosol.
引用
收藏
页码:4848 / 4857
页数:10
相关论文
共 68 条
[1]   Iron-sulfur proteins: ancient structures, still full of surprises [J].
Beinert, H .
JOURNAL OF BIOLOGICAL INORGANIC CHEMISTRY, 2000, 5 (01) :2-15
[2]   Fe-S proteins in sensing and regulatory functions [J].
Beinert, H ;
Kiley, PJ .
CURRENT OPINION IN CHEMICAL BIOLOGY, 1999, 3 (02) :152-157
[3]   Iron-sulfur clusters: Nature's modular, multipurpose structures [J].
Beinert, H ;
Holm, RH ;
Munck, E .
SCIENCE, 1997, 277 (5326) :653-659
[4]  
Bekri S, 2000, BLOOD, V96, P3256
[5]   Recycling of RNA binding iron regulatory protein 1 into an aconitase after nitric oxide removal depends on mitochondrial ATP [J].
Bouton, C ;
Chauveau, MJ ;
Lazereg, S ;
Drapier, JC .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2002, 277 (34) :31220-31227
[6]   Alternative splicing and genome complexity [J].
Brett, D ;
Pospisil, H ;
Valcárcel, J ;
Reich, J ;
Bork, P .
NATURE GENETICS, 2002, 30 (01) :29-30
[7]   Inhibition of Fe-S cluster biosynthesis decreases mitochondrial iron export: Evidence that Yfh1p affects Fe-S cluster synthesis [J].
Chen, OS ;
Hemenway, S ;
Kaplan, J .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2002, 99 (19) :12321-12326
[8]   A specialized mitochondrial molecular chaperone system: A role in formation of Fe/S centers [J].
Craig, EA ;
Marszalek, J .
CELLULAR AND MOLECULAR LIFE SCIENCES, 2002, 59 (10) :1658-1665
[9]   Identification of a human mitochondrial ABC transporter, the functional orthologue of yeast Atm1p [J].
Csere, P ;
Lill, R ;
Kispal, G .
FEBS LETTERS, 1998, 441 (02) :266-270
[10]  
DAUM G, 1982, J BIOL CHEM, V257, P3028