Power dissipation in nanoscale conductors: classical, semi-classical and quantum dynamics

被引:82
作者
Horsfield, AP
Bowler, DR
Fisher, AJ
Todorov, TN
Montgomery, MJ
机构
[1] UCL, Dept Phys & Astron, London WC1E 6BT, England
[2] UCL, London Ctr Nanotechnol, London WC1E 6BT, England
[3] Queens Univ Belfast, Sch Math & Phys, Belfast BT7 1NN, Antrim, North Ireland
关键词
D O I
10.1088/0953-8984/16/21/010
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
Modelling Joule heating is a difficult problem because of the need to introduce correct correlations between the motions of the ions and the electrons. In this paper we analyse three different models of current induced heating (a purely classical model, a fully quantum model and a hybrid model in which the electrons are treated quantum mechanically and the atoms are treated classically). We find that all three models allow for both heating and cooling processes in the presence of a current, and furthermore the purely classical and purely quantum models show remarkable agreement in the limit of high biases. However, the hybrid model in the Ehrenfest approximation tends to suppress heating. Analysis of the equations of motion reveals that this is a consequence of two things: the electrons are being treated as a continuous fluid and the atoms cannot undergo quantum fluctuations. A means for correcting this is suggested.
引用
收藏
页码:3609 / 3622
页数:14
相关论文
共 23 条
[21]   Current-induced forces in atomic-scale conductors [J].
Todorov, TN ;
Hoekstra, J ;
Sutton, AP .
PHILOSOPHICAL MAGAZINE B-PHYSICS OF CONDENSED MATTER STATISTICAL MECHANICS ELECTRONIC OPTICAL AND MAGNETIC PROPERTIES, 2000, 80 (03) :421-455
[22]  
Tomfohr JK, 2001, PHYS STATUS SOLIDI B, V226, P115, DOI 10.1002/1521-3951(200107)226:1<115::AID-PSSB115>3.0.CO
[23]  
2-5