Paleo-environment and radiocarbon calibration as derived from Lateglacial/Early Holocene tree-ring chronologies

被引:128
作者
Friedrich, M [1 ]
Kromer, B
Spurk, H
Hofmann, J
Kaiser, KF
机构
[1] Univ Hohenheim, Inst Bot 210, D-70593 Stuttgart, Germany
[2] Heidelberg Acad Sci, INF 366, D-69120 Heidelberg, Germany
[3] Swiss Fed Inst Forest Snow & Landscape Res, CH-8903 Birmensdorf, Switzerland
[4] Univ Zurich, Inst Geog, Dept Phys Geog, CH-8057 Zurich, Switzerland
关键词
D O I
10.1016/S1040-6182(99)00015-4
中图分类号
P9 [自然地理学];
学科分类号
0705 ; 070501 ;
摘要
We present an overview of the extended Hohenheim oak chronology (HOC) and the dendrochronologically dated Preboreal pine tree-ring chronology (PPC). Both provide an absolute, annual time frame of the Holocene, extending into the Younger Dryas (YD) back to 11,919 BP. Two floating pine and larch chronologies are C-14 dated, covering large parts of the Lateglacial. Dendro-ecological parameters, such as ring width and stable isotope variation are used to infer past environmental conditions. C-14 analyses on decadal sections provide a high-precision, high-resolution data set for calibration of the radiocarbon time scale. Based on a marked change in ring-width and growth pattern, the YD termination is clearly identified in the German pine chronology. Its absolute age of 11,570 BP appears synchronous, within the errors of the respective chronologies, to related signals in the Greenland ice cores (GRIP, GISP2) and in lacustrine varve sequences. The C-14 age of the Laacher-See tephra (LST) is determined from a series of decadal tree-ring samples to 11,063 +/- 12 C-14 BP; the calibrated range is 13,010-13,200 cal BP. The climatic impact of the LST is reflected in the growth pattern of our tree ring chronologies. (C) 2000 Elsevier Science Ltd and INQUA. All rights reserved.
引用
收藏
页码:27 / 39
页数:13
相关论文
共 54 条
[31]   Deglacial changes in ocean circulation from an extended radiocarbon calibration [J].
Hughen, KA ;
Overpeck, JT ;
Lehman, SJ ;
Kashgarian, M ;
Southon, J ;
Peterson, LC ;
Alley, R ;
Sigman, DM .
NATURE, 1998, 391 (6662) :65-68
[32]   IRREGULAR GLACIAL INTERSTADIALS RECORDED IN A NEW GREENLAND ICE CORE [J].
JOHNSEN, SJ ;
CLAUSEN, HB ;
DANSGAARD, W ;
FUHRER, K ;
GUNDESTRUP, N ;
HAMMER, CU ;
IVERSEN, P ;
JOUZEL, J ;
STAUFFER, B ;
STEFFENSEN, JP .
NATURE, 1992, 359 (6393) :311-313
[33]  
KAISER KF, 1987, BOREAS, V16, P293
[34]  
KAISER KF, 1993, HABILITATION EIDGENO
[35]   Revision and tentative extension of the tree-ring based 14C calibration, 9200-11,855 cal BP [J].
Kromer, B ;
Spurk, M .
RADIOCARBON, 1998, 40 (03) :1117-1125
[36]   Segments of atmospheric 14C change as derived from late glacial and Early Holocene floating tree-ring series [J].
Kromer, B ;
Spurk, M ;
Remmele, S ;
Barbetti, M .
RADIOCARBON, 1998, 40 (01) :351-358
[37]   SEASONAL C-13/C-12 CHANGES IN TREE RINGS - SPECIES AND SITE COHERENCE, AND A POSSIBLE DROUGHT INFLUENCE [J].
LEAVITT, SW .
CANADIAN JOURNAL OF FOREST RESEARCH-REVUE CANADIENNE DE RECHERCHE FORESTIERE, 1993, 23 (02) :210-218
[38]  
LEHMANN SL, 1992, NATURE, V372, P82
[39]  
Leuschner H-H., 1988, PACT, V22, P123
[40]   Bio- and chronostratigraphy of the lateglacial in the Eifel region, Germany [J].
Litt, T ;
Stebich, M .
QUATERNARY INTERNATIONAL, 1999, 61 :5-16