Loss and dispersion analysis of microstructured fibers by finite-difference method

被引:174
作者
Guo, SP [1 ]
Wu, F
Albin, S
Tai, H
Rogowski, RS
机构
[1] Old Dominion Univ, Dept Elect & Comp Engn, Photon Lab, Norfolk, VA 23529 USA
[2] NASA, Langley Res Ctr, Nondestruct Evaluat Sci Branch, Hampton, VA 23681 USA
来源
OPTICS EXPRESS | 2004年 / 12卷 / 15期
关键词
D O I
10.1364/OPEX.12.003341
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
The dispersion and loss in microstructured fibers are studied using a full-vectorial compact-2D finite-difference method in frequency-domain. This method solves a standard eigen-value problem from the Maxwell's equations directly and obtains complex propagation constants of the modes using anisotropic perfectly matched layers. A dielectric constant averaging technique using Ampere's law across the curved media interface is presented. Both the real and the imaginary parts of the complex propagation constant can be obtained with a high accuracy and fast convergence. Material loss, dispersion and spurious modes are also discussed. (C) 2004 Optical Society of America.
引用
收藏
页码:3341 / 3352
页数:12
相关论文
共 53 条
[21]   Analysis of circular fibers with an arbitrary index profile by the Galerkin method [J].
Guo, SP ;
Wu, F ;
Ikram, K ;
Albin, S .
OPTICS LETTERS, 2004, 29 (01) :32-34
[22]   Full-vectorial analysis of complex refractive-index photonic crystal fibers [J].
Guobin, R ;
Zhi, W ;
Shuqin, L ;
Yan, L ;
Shuisheng, J .
OPTICS EXPRESS, 2004, 12 (06) :1126-1135
[23]   Vector wave expansion method for leaky modes of microstructured optical fibers [J].
Issa, NA ;
Poladian, L .
JOURNAL OF LIGHTWAVE TECHNOLOGY, 2003, 21 (04) :1005-1012
[24]   FDTD analysis of dielectric resonators with curved surfaces [J].
Kaneda, N ;
Houshmand, B ;
Itoh, T .
IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, 1997, 45 (09) :1645-1649
[25]   Curvilinear hybrid edge/nodal elements with triangular shape for guided-wave problems [J].
Koshiba, M ;
Tsuji, Y .
JOURNAL OF LIGHTWAVE TECHNOLOGY, 2000, 18 (05) :737-743
[26]   Finite element beam propagation method with perfectly matched layer boundary conditions [J].
Koshiba, M ;
Tsuji, Y ;
Hikari, M .
IEEE TRANSACTIONS ON MAGNETICS, 1999, 35 (03) :1482-1485
[27]   ANALYSIS OF VECTORIAL MODE FIELDS IN OPTICAL WAVE-GUIDES BY A NEW FINITE-DIFFERENCE METHOD [J].
LUSSE, P ;
STUWE, P ;
SCHULE, J ;
UNGER, HG .
JOURNAL OF LIGHTWAVE TECHNOLOGY, 1994, 12 (03) :487-494
[28]   SOLUTION OF THE VECTOR WAVE-EQUATION FOR GENERAL DIELECTRIC WAVE-GUIDES BY THE GALERKIN METHOD [J].
MARCUSE, D .
IEEE JOURNAL OF QUANTUM ELECTRONICS, 1992, 28 (02) :459-465
[29]   Optimum PML ABC conductivity profile in FDFD [J].
Marengo, EA ;
Rappaport, CM ;
Miller, EL .
IEEE TRANSACTIONS ON MAGNETICS, 1999, 35 (03) :1506-1509
[30]   SYMMETRY-INDUCED MODAL CHARACTERISTICS OF UNIFORM WAVEGUIDES .2. THEORY [J].
MCISAAC, PR .
IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, 1975, MT23 (05) :429-433