A stochastic finite element method in linear mechanics.

被引:13
作者
Sudret, B
Berveiller, M
Lemaire, M
机构
[1] EDF R&D, Dept Mat & Mecan Composants, F-77818 Moret Sur Loing, France
[2] IFMA LaRAMA, F-63175 Aubiere, France
来源
COMPTES RENDUS MECANIQUE | 2004年 / 332卷 / 07期
关键词
computational solid mechanics; stochastic finite elements; polynomial chaos; sensitivity analysis; structural reliability;
D O I
10.1016/j.crme.2004.02.024
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
A stochastic finite element method in linear mechanics. The stochastic finite element method presented in this Note consists in representing in a probabilistic form the response of a linear mechanical system whose material properties and loading are random. Each input random variable is expanded into a Hermite polynomial series in standard normal random variables. The response (e.g., the nodal displacement vector) is expanded onto the so-called polynomial chaos. The coefficients of the expansion are obtained by a Galerkin-type method in the space of probability. (C) 2004, Academie des sciences. Publie par Elsevier SAS. Tons droits reserves.
引用
收藏
页码:531 / 537
页数:7
相关论文
共 9 条
  • [1] BERVEILLER M, 2003, HT2603039A EDF R D
  • [2] Ditlevsen O., 1996, Structural reliability methods
  • [3] Ghanem R, 1991, STOCHASTIC FINITE EL, DOI DOI 10.1007/978-1-4612-3094-6_4
  • [4] Isukapalli S.S., 1999, THESIS STATE U NEW J
  • [5] Malliavin P., 1997, STOCHASTIC ANAL
  • [6] Non-Gaussian simulation using Hermite polynomial expansion: convergences and algorithms
    Puig, B
    Poiron, F
    Soize, C
    [J]. PROBABILISTIC ENGINEERING MECHANICS, 2002, 17 (03) : 253 - 264
  • [7] SUDRET B, 2003, P 16 C FRANC MEC NIC
  • [8] Sudret B., 2003, P 11 IFIP WG7 5 C BA
  • [9] Zienkiewicz O C., 2000, FINITE ELEMENT METHO, V5th ed.