Controlled transport of latex beads through vertically aligned carbon nanofiber membranes

被引:54
作者
Zhang, L
Melechko, AV
Merkulov, VI
Guillorn, MA
Simpson, ML
Lowndes, DH
Doktycz, MJ
机构
[1] Oak Ridge Natl Lab, Div Life Sci, Oak Ridge, TN 37831 USA
[2] Oak Ridge Natl Lab, Div Solid State, Thin Film & Nanostruct Mat Phys Grp, Oak Ridge, TN 37831 USA
[3] Oak Ridge Natl Lab, Molec Scale Engn Nanoscale Technol Grp, Oak Ridge, TN 37831 USA
[4] Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA
[5] Univ Tennessee, Ctr Environm Biotechnol, Knoxville, TN 37996 USA
[6] Univ Tennessee, Dept Elect & Comp Engn, Knoxville, TN 37996 USA
关键词
D O I
10.1063/1.1490142
中图分类号
O59 [应用物理学];
学科分类号
摘要
Stripes of vertically aligned carbon nanofibers (VACNFs) have been used to form membranes for size selectively controlling the transport of latex beads. Fluidic structures were created in poly(dimethylsiloxane) (PDMS) and interfaced to the VACNF structures for characterization of the membrane pore size. Solutions of fluorescently labeled latex beads were introduced into the PDMS channels and characterized by fluorescence and scanning electron microscopy. Results show that the beads size selectively pass through the nanofiber barriers and the size restriction limit correlates with the interfiber spacing. The results suggest that altering VACNF array density can alter fractionation properties of the membrane. Such membranes may be useful for molecular sorting and for mimicking the properties of natural membranes. (C) 2002 American Institute of Physics.
引用
收藏
页码:135 / 137
页数:3
相关论文
共 10 条
[1]  
Armani D., 1998, 12 INT C MEMS MEMS 9, V99, P222
[2]   Rapid prototyping of microfluidic systems in poly(dimethylsiloxane) [J].
Duffy, DC ;
McDonald, JC ;
Schueller, OJA ;
Whitesides, GM .
ANALYTICAL CHEMISTRY, 1998, 70 (23) :4974-4984
[3]   Lateral separation of macromolecules and polyelectrolytes in microlithographic arrays [J].
Ertas, D .
PHYSICAL REVIEW LETTERS, 1998, 80 (07) :1548-1551
[4]   Polydimethylsiloxane as an elastic material applied in a capacitive accelerometer [J].
Lotters, JC ;
Olthuis, W ;
Veltink, PH ;
Bergveld, P .
JOURNAL OF MICROMECHANICS AND MICROENGINEERING, 1996, 6 (01) :52-54
[5]   Patterned growth of individual and multiple vertically aligned carbon nanofibers [J].
Merkulov, VI ;
Lowndes, DH ;
Wei, YY ;
Eres, G ;
Voelkl, E .
APPLIED PHYSICS LETTERS, 2000, 76 (24) :3555-3557
[6]   Alignment mechanism of carbon nanofibers produced by plasma-enhanced chemical-vapor deposition [J].
Merkulov, VI ;
Melechko, AV ;
Guillorn, MA ;
Lowndes, DH ;
Simpson, ML .
APPLIED PHYSICS LETTERS, 2001, 79 (18) :2970-2972
[7]   Shaping carbon nanostructures by controlling the synthesis process [J].
Merkulov, VI ;
Guillorn, MA ;
Lowndes, DH ;
Simpson, ML ;
Voelkl, E .
APPLIED PHYSICS LETTERS, 2001, 79 (08) :1178-1180
[8]   From micro- to nanofabrication with soft materials [J].
Quake, SR ;
Scherer, A .
SCIENCE, 2000, 290 (5496) :1536-1540
[9]   Monolithic nanofluid sieving structures for DNA manipulation [J].
Turner, SW ;
Perez, AM ;
Lopez, A ;
Craighead, HG .
JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B, 1998, 16 (06) :3835-3840
[10]   DNA ELECTROPHORESIS IN MICROLITHOGRAPHIC ARRAYS [J].
VOLKMUTH, WD ;
AUSTIN, RH .
NATURE, 1992, 358 (6387) :600-602