Exponential families of non-isomorphic triangulations of complete graphs

被引:64
作者
Bonnington, CP
Grannell, MJ
Griggs, TS
Sirán, J
机构
[1] Univ Auckland, Dept Math, Auckland, New Zealand
[2] Open Univ, Dept Pure Math, Milton Keynes MK7 6AA, Bucks, England
[3] Slovak Univ Technol Bratislava, Dept Math, Bratislava 81368, Slovakia
关键词
D O I
10.1006/jctb.1999.1939
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove that the number of non-isomorphic face 2-colourable triangulations of the complete graph K-n in an orientable surface is at least 2(n2)/(54-O(n)) for n congruent to 7 or 19 module 36, and is at least 2(2n2/81-O(n)) for n congruent to 19 or 55 modulo 108. (C) 2000 Academic Press.
引用
收藏
页码:169 / 184
页数:16
相关论文
共 8 条
[1]  
[Anonymous], 1974, MAP COLOR THEOREM, DOI DOI 10.1007/978-3-642-65759-7
[2]   Face 2-colourable triangular embeddings of complete graphs [J].
Grannell, MJ ;
Griggs, TS ;
Siran, J .
JOURNAL OF COMBINATORIAL THEORY SERIES B, 1998, 74 (01) :8-19
[3]  
Grannell MJ, 1998, J COMB DES, V6, P325
[4]  
KORZHIK VP, UNPUB NUMBER NONISOM
[5]   3 NONISOMORPHIC TRIANGULATIONS OF AN ORIENTABLE SURFACE WITH THE SAME COMPLETE GRAPH [J].
LAWRENCENKO, S ;
NEGAMI, S ;
WHITE, AT .
DISCRETE MATHEMATICS, 1994, 135 (1-3) :367-369
[6]   BLOCK DESIGNS AND GRAPH IMBEDDINGS [J].
WHITE, AT .
JOURNAL OF COMBINATORIAL THEORY SERIES B, 1978, 25 (02) :166-183
[7]   NONISOMORPHIC STEINER TRIPLE SYSTEMS [J].
WILSON, RM .
MATHEMATISCHE ZEITSCHRIFT, 1974, 135 (04) :303-313
[8]  
Youngs J. W. T., 1970, GRAPH THEORY ITS APP, P17