Investigating duality on stability conditions

被引:25
作者
de Oliveira, MC [1 ]
机构
[1] Univ Estadual Campinas, Sch Elect & Comp Engn, Dept Telemat, BR-13083970 Campinas, SP, Brazil
基金
巴西圣保罗研究基金会;
关键词
stability; linear systems; duality; linear matrix inequalities; optimization;
D O I
10.1016/j.sysconle.2003.09.011
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper is devoted to investigate the role played by duality in stability analysis of linear time-invariant systems. We seek for a dual statement of a recently developed method for generating stability conditions, which combines Lyapunov stability theory with Finsler's Lemma. This method, developed in the time domain, is able to generate a set of (primal) equivalent stability tests involving extra multipliers. The resulting tests have very attractive properties. Stability is characterized via linear matrix inequalities and we use optimization theory to obtain the duals. The dual problems are given a frequency domain interpretation. (C) 2003 Elsevier B.V. All rights reserved.
引用
收藏
页码:1 / 6
页数:6
相关论文
共 11 条
[1]  
Ben-Tal A., 2000, HDB SEMIDEFINITE PRO, P139
[2]   STABILITY RESULTS FOR DISCRETE-TIME LINEAR-SYSTEMS WITH MARKOVIAN JUMPING PARAMETERS [J].
COSTA, OLV ;
FRAGOSO, MD .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1993, 179 (01) :154-178
[3]  
de Oliveira MC, 2001, LECT NOTES CONTR INF, V268, P241
[4]  
DEOLIVEIRA MC, 2002, P 15 IFAC WORLD C BA, P3021
[5]  
ELGAHOUI L, 2000, ADV LINEAR MATRIX IN
[6]  
Finsler P., 1936, Comment. Math. Helv, V9, P188, DOI [DOI 10.1007/BF01258188, 10.1007/BF01258188]
[7]   D-stability of polynomial matrices [J].
Henrion, D ;
Bachelier, O ;
Sebek, M .
INTERNATIONAL JOURNAL OF CONTROL, 2001, 74 (08) :845-856
[8]   Rank-one LMIs and Lyapunov's inequality [J].
Henrion, D ;
Meinsma, G .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2001, 46 (08) :1285-1288
[9]   Rank-one LMI approach to simultaneous stabilization of linear systems [J].
Henrion, D ;
Tarbouriech, S ;
Sebek, M .
SYSTEMS & CONTROL LETTERS, 1999, 38 (02) :79-89
[10]  
SHAPIRO A, 2000, HDB SEMIDEFINITE PRO, P68