The number of congruent simplices in a point set

被引:12
作者
Agarwal, PK [1 ]
Sharir, M
机构
[1] Duke Univ, Dept Comp Sci, Durham, NC 27708 USA
[2] Tel Aviv Univ, Dept Comp Sci, IL-69978 Tel Aviv, Israel
[3] NYU, Courant Inst Math Sci, New York, NY 10012 USA
关键词
D O I
10.1007/s00454-002-0727-x
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
For 1 less than or equal to k less than or equal to d - 1, let f(k)((d)) (n) be the maximum possible number of k-simplices spanned by a set of n points in R-d that are congruent to a given k-simplex. We prove that f(2)((3)) (n) = O (n(5/3)2(O)(alpha(2(n)))) f(2)((4)) (n) = O (n(2+epsilon)), for any epsilon > 0, f(2)((5)) (n) = Theta (n(7/3)), and f(3)((4)) (n) = O(n(20/9+epsilon)), for any epsilon > 0. We also derive a recurrence to bound f(k)((d)) (n) for arbitrary values of k and d, and use it to derive the bound f(k)((d)) (n) = O(n(d/2+epsilon)), for any epsilon > 0, for d less than or equal to 7 and k less than or equal to d -2. Following Erdos and Purdy, we conjecture that this bound holds for larger values of d as well, and for k less than or equal to d - 2.
引用
收藏
页码:123 / 150
页数:28
相关论文
共 27 条
[21]  
ERDOS P, 1975, P 6 SE C COMB GRAPH, P291
[22]   RANGE SEARCHING WITH EFFICIENT HIERARCHICAL CUTTINGS [J].
MATOUSEK, J .
DISCRETE & COMPUTATIONAL GEOMETRY, 1993, 10 (02) :157-182
[23]  
NEMHAUSER GL, 1988, INTEGER COMMBINATORI
[24]  
PACH J, 1995, COMBINATORIAL GEOMET
[25]  
Sharir M., 1995, DAVENPORT SCHINZEL S
[26]  
Spencer J., 1984, Graph Theory and Combinatorics, P293
[27]  
Szekely L. A., 1997, Combinatorics, Probability and Computing, V6, P353, DOI 10.1017/S0963548397002976