A method for radiation-force localized drug delivery using gas-filled lipospheres

被引:158
作者
Shortencarier, MJ
Dayton, PA
Bloch, SH
Schumann, PA
Matsunaga, TO
Ferrara, KW [1 ]
机构
[1] Univ Calif Davis, Dept Biomed Engn, Livermore, CA 95616 USA
[2] ImaRx Therapeut Inc, Tucson, AZ 85719 USA
关键词
D O I
10.1109/TUFFC.2004.1320741
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
We have developed a method using ultrasound and acoustically active lipospheres (AALs) that might be used to deliver bioactive substances to the vascular endothelium. The AALs consist of a small gas bubble surrounded by a thick oil shell and enclosed by an outermost lipid layer. The AALs are similar to ultrasound contrast agents: they can be nondestructively deflected using ultrasound radiation force, and fragmented with high-intensity ultrasound pulses. The lipid-oil complex might be used to carry bioactive substances at high concentrations. An optimized sequence of ultrasound pulses can deflect; the AALs toward a vessel wall then disrupt them, painting their contents across the vascular endothelium. This paper presents results from a series of in vitro and ex vivo experiments demonstrating localization of a fluorescent model drug. In experiments using a human melanoma cell (A2085) monolayer, a specific radiation force-fragment at ion ultrasound pulse sequence increased cell fluorescence more than 10-fold over no ultra-sound or fragmentation pulses alone, and by 50% over radiation force pulses alone. We observe that dye transfer is limited to cells that are in the region of ultrasonic focus, indicating that the application of radiation force pulses to bring the delivery vehicle into proximity with the cell is required for successful adhesion of the vehicle fragments to the cell membrane. We also demonstrate dye transfer from flowing AALs, both in a mimetic vessel and in excised rat cecum. We believe that this method could be successfully used for drug delivery in vivo.
引用
收藏
页码:822 / 831
页数:10
相关论文
共 27 条
[1]   Dynamics of therapeutic ultrasound contrast agents [J].
Allen, JS ;
May, DJ ;
Ferrara, KW .
ULTRASOUND IN MEDICINE AND BIOLOGY, 2002, 28 (06) :805-816
[2]  
Bjerknes V, 1906, Fields of Force
[3]   Threshold of fragmentation for ultrasonic contrast agents [J].
Chomas, JE ;
Dayton, P ;
May, D ;
Ferrara, K .
JOURNAL OF BIOMEDICAL OPTICS, 2001, 6 (02) :141-150
[4]   Preparation, characterization and properties of sterically stabilized paclitaxel-containing liposomes [J].
Crosasso, P ;
Ceruti, M ;
Brusa, P ;
Arpicco, S ;
Dosio, F ;
Cattel, L .
JOURNAL OF CONTROLLED RELEASE, 2000, 63 (1-2) :19-30
[5]   BJERKNES FORCES ON BUBBLES IN A STATIONARY SOUND FIELD [J].
CRUM, LA .
JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 1975, 57 (06) :1363-1370
[6]   MOTION OF BUBBLES IN A STATIONARY SOUND FIELD [J].
CRUM, LA ;
ELLER, AI .
JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 1970, 48 (01) :181-&
[7]   Acoustic radiation force in vivo:: A mechanism to assist targeting of microbubbles [J].
Dayton, P ;
Klibanov, A ;
Brandenburger, G ;
Ferrara, K .
ULTRASOUND IN MEDICINE AND BIOLOGY, 1999, 25 (08) :1195-1201
[8]  
DAYTON P, 2001, THESIS U VIRGINIA CH
[9]   A preliminary evaluation of the effects of primary and secondary radiation forces on acoustic contrast agents [J].
Dayton, PA ;
Morgan, KE ;
Klibanov, ALS ;
Brandenburger, G ;
Nightingale, KR ;
Ferrara, KW .
IEEE TRANSACTIONS ON ULTRASONICS FERROELECTRICS AND FREQUENCY CONTROL, 1997, 44 (06) :1264-1277
[10]   The magnitude of radiation force on ultrasound contrast agents [J].
Dayton, PA ;
Allen, JS ;
Ferrara, KW .
JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 2002, 112 (05) :2183-2192