Using transcriptome profiling to characterize QTL regions on chicken chromosome 5

被引:17
作者
Le Mignon, Guillaume [1 ,2 ,3 ]
Desert, Colette [1 ,2 ]
Pitel, Frederique [4 ]
Leroux, Sophie [4 ]
Demeure, Olivier [1 ,2 ]
Guernec, Gregory [5 ]
Abasht, Behnam [1 ,2 ]
Douaire, Madeleine [1 ,2 ]
Le Roy, Pascale [1 ,2 ]
Lagarrigue, Sandrine [1 ,2 ]
机构
[1] INRA, UMR598, GFAS IFR140, F-35000 Rennes, France
[2] Agrocampus Ouest, UMR598, GFAS IFR140, F-35000 Rennes, France
[3] ITAVI, F-75008 Paris, France
[4] INRA, Lab Genet Cellulaire, UR444, F-31326 Auzeville, France
[5] INRA, UR1012, SCRIBE, IFR140, F-35000 Rennes, France
来源
BMC GENOMICS | 2009年 / 10卷
关键词
QUANTITATIVE TRAIT LOCI; CDNA MICROARRAY DATA; GENE-EXPRESSION; CANDIDATE GENES; IDENTIFICATION; DISSECTION; LINKAGE; MOUSE; ATHEROSCLEROSIS; 5-LIPOXYGENASE;
D O I
10.1186/1471-2164-10-575
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Background: Although many QTL for various traits have been mapped in livestock, location confidence intervals remain wide that makes difficult the identification of causative mutations. The aim of this study was to test the contribution of microarray data to QTL detection in livestock species. Three different but complementary approaches are proposed to improve characterization of a chicken QTL region for abdominal fatness (AF) previously detected on chromosome 5 (GGA5). Results: Hepatic transcriptome profiles for 45 offspring of a sire known to be heterozygous for the distal GGA5 AF QTL were obtained using a 20 K chicken oligochip. mRNA levels of 660 genes were correlated with the AF trait. The first approach was to dissect the AF phenotype by identifying animal subgroups according to their 660 transcript profiles. Linkage analysis using some of these subgroups revealed another QTL in the middle of GGA5 and increased the significance of the distal GGA5 AF QTL, thereby refining its localization. The second approach targeted the genes correlated with the AF trait and regulated by the GGA5 AF QTL region. Five of the 660 genes were considered as being controlled either by the AF QTL mutation itself or by a mutation close to it; one having a function related to lipid metabolism (HMGCS1). In addition, a QTL analysis with a multiple trait model combining this 5 gene-set and AF allowed us to refine the QTL region. The third approach was to use these 5 transcriptome profiles to predict the paternal Q versus q AF QTL mutation for each recombinant offspring and then refine the localization of the QTL from 31 cM (100 genes) at a most probable location confidence interval of 7 cM (12 genes) after determining the recombination breakpoints, an interval consistent with the reductions obtained by the two other approaches. Conclusion: The results showed the feasibility and efficacy of the three strategies used, the first revealing a QTL undetected using the whole population, the second providing functional information about a QTL region through genes related to the trait and controlled by this region (HMGCS1), the third could drastically refine a QTL region.
引用
收藏
页数:14
相关论文
共 51 条
[1]   Review of quantitative trait loci identified in the chicken [J].
Abasht, B. ;
Dekkers, J. C. M. ;
Lamont, S. J. .
POULTRY SCIENCE, 2006, 85 (12) :2079-2096
[2]   Fatness QTL on chicken chromosome 5 and interaction with sex [J].
Abasht, B ;
Pittel, F ;
Lagarrigue, S ;
Le Bihan-Duval, E ;
Le Roy, P ;
Demeure, O ;
Vignoles, F ;
Simon, J ;
Cogburn, L ;
Aggrey, S ;
Vignal, A ;
Douaire, M .
GENETICS SELECTION EVOLUTION, 2006, 38 (03) :297-311
[3]   Genetic linkage and expression analysis of SREBP and lipogenic genes in fat and lean chicken [J].
Assaf, S ;
Lagarrigue, S ;
Daval, S ;
Sansom, M ;
Leclercq, B ;
Michel, JL ;
Pitel, F ;
Alizadeh, M ;
Vignal, A ;
Douaire, M .
COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY B-BIOCHEMISTRY & MOLECULAR BIOLOGY, 2004, 137 (04) :433-441
[4]   An integrative genomics strategy for systematic characterization of genetic loci modulating phenotypes [J].
Bao, Lei ;
Peirce, Jeremy L. ;
Zhou, Mi ;
Li, Hongqiang ;
Goldowitz, Dan ;
Williams, Robert W. ;
Lu, Lu ;
Cui, Yan .
HUMAN MOLECULAR GENETICS, 2007, 16 (11) :1381-1390
[5]   NCBI GEO: mining tens of millions of expression profiles - database and tools update [J].
Barrett, Tanya ;
Troup, Dennis B. ;
Wilhite, Stephen E. ;
Ledoux, Pierre ;
Rudnev, Dmitry ;
Evangelista, Carlos ;
Kim, Irene F. ;
Soboleva, Alexandra ;
Tomashevsky, Maxim ;
Edgar, Ron .
NUCLEIC ACIDS RESEARCH, 2007, 35 :D760-D765
[6]   Genetic dissection of transcriptional regulation in budding yeast [J].
Brem, RB ;
Yvert, G ;
Clinton, R ;
Kruglyak, L .
SCIENCE, 2002, 296 (5568) :752-755
[7]   Uncovering regulatory pathways that affect hematopoietic stem cell function using 'genetical genomics' [J].
Bystrykh, L ;
Weersing, E ;
Dontje, B ;
Sutton, S ;
Pletcher, MT ;
Wiltshire, T ;
Su, AI ;
Vellenga, E ;
Wang, JT ;
Manly, KF ;
Lu, L ;
Chesler, EJ ;
Alberts, R ;
Jansen, RC ;
Williams, RW ;
Cooke, MP ;
de Haan, G .
NATURE GENETICS, 2005, 37 (03) :225-232
[8]   sigReannot: an oligo-set re-annotation pipeline based on similarities with the Ensembl transcripts and Unigene clusters [J].
Pierrot Casel ;
François Moreews ;
Sandrine Lagarrigue ;
Christophe Klopp .
BMC Proceedings, 3 (Suppl 4)
[9]   A mutation creating a potential illegitimate microRNA target site in the myostatin gene affects muscularity in sheep [J].
Clop, Alex ;
Marcq, Fabienne ;
Takeda, Haruko ;
Pirottin, Dimitri ;
Tordoir, Xavier ;
Bibe, Bernard ;
Bouix, Jacques ;
Caiment, Florian ;
Elsen, Jean-Michel ;
Eychenne, Francis ;
Larzul, Catherine ;
Laville, Elisabeth ;
Meish, Francoise ;
Milenkovic, Dragan ;
Tobin, James ;
Charlier, Carole ;
Georges, Michel .
NATURE GENETICS, 2006, 38 (07) :813-818
[10]   Genetic regulation of gene expression during shoot development in Arabidopsis [J].
DeCook, R ;
Lall, S ;
Nettleton, D ;
Howell, SH .
GENETICS, 2006, 172 (02) :1155-1164