An integrative genomics strategy for systematic characterization of genetic loci modulating phenotypes

被引:13
作者
Bao, Lei
Peirce, Jeremy L.
Zhou, Mi
Li, Hongqiang
Goldowitz, Dan
Williams, Robert W.
Lu, Lu
Cui, Yan
机构
[1] Univ Tennessee, Ctr Hlth Sci, Dept Mol Sci, Memphis, TN 38163 USA
[2] Univ Tennessee, Ctr Hlth Sci, Ctr Genom & Bioinformat, Memphis, TN 38163 USA
[3] Univ Tennessee, Ctr Hlth Sci, Dept Anat & Neurobiol, Memphis, TN 38163 USA
关键词
D O I
10.1093/hmg/ddm089
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Naturally occurring genetic variations may affect certain phenotypes through influencing transcript levels of the genes that are causally related to those phenotypes. Genomic regions harboring common sequence variants that modulate gene expression can be mapped as quantitative trait loci (QTLs) using a newly developed genetical genomics approach. This enables a new strategy for systematically mapping novel genetic loci underlying various phenotypes. In this work, we started from a seed set of genes with variants that are known to affect behavioral and neurological phenotypes (as recorded in Mammalian Phenotype Ontology Database) and used microarrays to analyze their expression levels in brain samples of a panel of BXD recombinant inbred mouse strains. We then systematically mapped the QTLs controlling the expression of these genes. Candidate causal genes in the QTL intervals were evaluated for evidence of functional genetic polymorphisms. Using this method, we were able to predict novel genetic loci and causal genes for a number of behavioral and neurological phenotypes. Lines of independent evidence supporting some of our results were provided by transcription factor binding site analysis and by biomedical literature. This strategy integrates gene-phenotype relations from decades of experimental mutagenesis studies and new genomic resources to provide an approach to rapidly expand knowledge on genetic loci modulating phenotypes.
引用
收藏
页码:1381 / 1390
页数:10
相关论文
共 68 条
[1]   The knockout mouse project [J].
Austin, CP ;
Battey, JF ;
Bradley, A ;
Bucan, M ;
Capecchi, M ;
Collins, FS ;
Dove, WF ;
Duyk, G ;
Dymecki, S ;
Eppig, JT ;
Grieder, FB ;
Heintz, N ;
Hicks, G ;
Insel, TR ;
Joyner, A ;
Koller, BH ;
Lloyd, KCK ;
Magnuson, T ;
Moore, MW ;
Nagy, A ;
Pollock, JD ;
Roses, AD ;
Sands, AT ;
Seed, B ;
Skarnes, WC ;
Snoddy, J ;
Soriano, P ;
Stewart, DJ ;
Stewart, F ;
Stillman, B ;
Varmus, H ;
Varticovski, L ;
Verma, IM ;
Vogt, TF ;
von Melchner, H ;
Witkowski, J ;
Woychik, RP ;
Wurst, W ;
Yancopoulos, GD ;
Young, SG ;
Zambrowicz, B .
NATURE GENETICS, 2004, 36 (09) :921-924
[2]   The European dimension for the mouse genome mutagenesis program [J].
Auwerx, J ;
Avner, P ;
Baldock, R ;
Ballabio, A ;
Balling, R ;
Barbacid, M ;
Berns, A ;
Bradley, A ;
Brown, S ;
Carmeliet, P ;
Chambon, P ;
Cox, R ;
Davidson, D ;
Davies, K ;
Duboule, D ;
Forejt, J ;
Granucci, F ;
Hastie, N ;
de Angelis, MH ;
Jackson, I ;
Kioussis, D ;
Kollias, G ;
Lathrop, M ;
Lendahl, U ;
Malumbres, M ;
von Melchner, H ;
Müller, W ;
Partanen, J ;
Ricciardi-Castagnoli, P ;
Rigby, P ;
Rosen, B ;
Rosenthal, N ;
Skarnes, B ;
Stewart, AF ;
Thornton, J ;
Tocchini-Valentini, G ;
Wagner, E ;
Wahli, W ;
Wurst, W .
NATURE GENETICS, 2004, 36 (09) :925-927
[3]   Computational, integrative, and comparative methods for the elucidation of genetic coexpression networks [J].
Baldwin, NE ;
Chesler, EJ ;
Kirov, S ;
Langston, MA ;
Snoddy, JR ;
Williams, RW ;
Zhang, B .
JOURNAL OF BIOMEDICINE AND BIOTECHNOLOGY, 2005, (02) :172-180
[4]   PolymiRTS Database: linking polymorphisms in microRNA target sites with complex traits [J].
Bao, Lei ;
Zhou, Mi ;
Wu, Ligang ;
Lu, Lu ;
Goldowitz, Dan ;
Williams, Robert W. ;
Cui, Yan .
NUCLEIC ACIDS RESEARCH, 2007, 35 :D51-D54
[5]   Combining gene expression QTL mapping and phenotypic spectrum analysis to uncover gene regulatory relationships [J].
Bao, Lei ;
Wei, Lai ;
Peirce, Jeremy L. ;
Homayouni, Ramin ;
Li, Hongqiang ;
Zhou, Mi ;
Chen, Hao ;
Lu, Lu ;
Williams, Robert W. ;
Pfeffer, Lawrence M. ;
Goldowitz, Dan ;
Cui, Yan .
MAMMALIAN GENOME, 2006, 17 (06) :575-583
[6]   Genetical genomics analysis of a yeast segregant population for transcription network inference [J].
Bing, N ;
Hoeschele, I .
GENETICS, 2005, 170 (02) :533-542
[7]  
BIOLA O, 2003, NAT REV GENET, V4, P911
[8]   A comparison of normalization methods for high density oligonucleotide array data based on variance and bias [J].
Bolstad, BM ;
Irizarry, RA ;
Åstrand, M ;
Speed, TP .
BIOINFORMATICS, 2003, 19 (02) :185-193
[9]   The landscape of genetic complexity across 5,700 gene expression traits in yeast [J].
Brem, RB ;
Kruglyak, L .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2005, 102 (05) :1572-1577
[10]   Genetic dissection of transcriptional regulation in budding yeast [J].
Brem, RB ;
Yvert, G ;
Clinton, R ;
Kruglyak, L .
SCIENCE, 2002, 296 (5568) :752-755