Pyrimidine and purine biosynthesis and degradation in plants

被引:437
作者
Zrenner, Rita [1 ]
Stitt, Mark
Sonnewald, Uwe
Boldt, Ralf
机构
[1] Max Planck Inst Mol Plant Physiol, D-14476 Potsdam, Germany
[2] Univ Erlangen Nurnberg, Lehrstuhl Biochem, D-91058 Erlangen, Germany
[3] Univ Rostock, Inst Biosci, Dept Plant Physiol, D-18059 Rostock, Germany
关键词
D O I
10.1146/annurev.arplant.57.032905.105421
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Nucleotide metabolism operates in all living organisms, embodies an evolutionarily ancient and indispensable complex of metabolic pathways and is of utmost importance for plant metabolism and development. In plants, nucleotides can be synthesized de novo from 5-phosphoribosyl-1-pyrophosphate and simple molecules (e.g., CO2, amino acids, and tetrahydrofolate), or be derived from preformed nucleosides and nucleobases via salvage reactions. Nucleotides are degraded to simple metabolites, and this process permits the recycling of phosphate, nitrogen, and carbon into central metabolic pools. Despite extensive biochemical knowledge about purine and pyrimidine metabolism, comprehensive studies of the regulation of this metabolism in plants are only starting to emerge. Here we review progress in molecular aspects and recent studies on the regulation and manipulation of nucleotide metabolism in plants.
引用
收藏
页码:805 / 836
页数:32
相关论文
共 153 条
[81]   Adenosine kinase of arabidopsis. Kinetic properties and gene expression [J].
Moffatt, BA ;
Wang, L ;
Allen, MS ;
Stevens, YY ;
Qin, WS ;
Snider, J ;
von Schwartzenberg, K .
PLANT PHYSIOLOGY, 2000, 124 (04) :1775-1785
[82]  
MOFFATT BA, 2002, AM SOC PLANT BIOL, DOI DOI 10.1199.TAB.0018
[83]   CHARACTERIZATION OF A LOW-MOLECULAR-MASS AUTOPHOSPHORYLATING PROTEIN IN CULTURED SUGARCANE CELLS AND ITS IDENTIFICATION AS A NUCLEOSIDE DIPHOSPHATE KINASE [J].
MOISYADI, S ;
DHARMASIRI, S ;
HARRINGTON, HM ;
LUKAS, TJ .
PLANT PHYSIOLOGY, 1994, 104 (04) :1401-1409
[84]   NDP kinase 2 interacts with two oxidative stress-activated MAPKs to regulate cellular redox state and enhances multiple stress tolerance in transgenic plants [J].
Moon, H ;
Lee, B ;
Choi, G ;
Shin, S ;
Prasad, DT ;
Lee, O ;
Kwak, SS ;
Kim, DH ;
Nam, J ;
Bahk, J ;
Hong, JC ;
Lee, SY ;
Cho, MJ ;
Lim, CO ;
Yun, DJ .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2003, 100 (01) :358-363
[85]   Evolutionary implications of the mosaic pyrimidine-biosynthetic pathway in eukaryotes [J].
Nara, T ;
Hshimoto, T ;
Aoki, T .
GENE, 2000, 257 (02) :209-222
[86]   HETEROSPECIFIC CLONING OF ARABIDOPSIS-THALIANA CDNAS BY DIRECT COMPLEMENTATION OF PYRIMIDINE AUXOTROPHIC MUTANTS OF SACCHAROMYCES-CEREVISIAE .1. CLONING AND SEQUENCE-ANALYSIS OF 2 CDNAS CATALYZING THE 2ND, 5TH AND 6TH STEPS OF THE DE-NOVO PYRIMIDINE BIOSYNTHESIS PATHWAY [J].
NASR, F ;
BERTAUCHE, N ;
DUFOUR, ME ;
MINET, M ;
LACROUTE, F .
MOLECULAR & GENERAL GENETICS, 1994, 244 (01) :23-32
[87]  
Neuhard J, 1987, Cellular and molecular biology, V1987, P445
[88]   Transport of UDP-galactose in plants -: Identification and functional characterization of AtUTr1, an Arabidopsis thaliana UDP-galactose/UDP-glucose transporter [J].
Norambuena, L ;
Marchant, L ;
Berninsone, P ;
Hirschberg, CB ;
Silva, H ;
Orellana, A .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2002, 277 (36) :32923-32929
[89]   SOME REGULATORY PROPERTIES OF PEA LEAF CARBAMOYL PHOSPHATE SYNTHETASE [J].
ONEAL, TD ;
NAYLOR, AW .
PLANT PHYSIOLOGY, 1976, 57 (01) :23-28
[90]   PYRIMIDINE NUCLEOTIDE BIOSYNTHESIS IN PHASEOLUS-AUREUS - ENZYMIC ASPECTS OF CONTROL OF CARBAMOYL PHOSPHATE SYNTHESIS AND UTILIZATION [J].
ONG, BL ;
JACKSON, JF .
BIOCHEMICAL JOURNAL, 1972, 129 (03) :583-+