A novel gene organization:: intronic snoRNA gene clusters from Oryza sativa

被引:37
作者
Liang, D [1 ]
Zhou, H [1 ]
Zhang, P [1 ]
Chen, YQ [1 ]
Chen, X [1 ]
Chen, CL [1 ]
Qu, LH [1 ]
机构
[1] Zhongshan Univ, Biotechnol Res Ctr, Educ Minist, Key Lab Gene Engn, Guangzhou 510275, Peoples R China
基金
中国国家自然科学基金;
关键词
D O I
10.1093/nar/gkf426
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Based on the analysis of structural features and conserved elements, 27 novel snoRNA genes have been identified from rice. All of them belong to the C/D box-containing snoRNA family except for one that belongs to the H/ACA box type. The newly found genes fall into six clusters that comprise at least three snoRNA genes, and in one case as many as nine genes. Interestingly, four of the six clusters are located within the largest intron of a protein coding gene. The majority of intronic snoRNA gene clusters are simply formed by multiple copies of the same species of snoRNA gene that possess the identical functional elements. This implies a possible mechanism of duplication for the origin of repeating snoRNA coding regions in one intron. However, a few intronic snoRNA gene clusters consisting of different snoRNAs species were also observed. Polycistronic precursors from two independently transcribed clusters were demonstrated by RT-PCR and individual snoRNAs processed from the polycistronic precursors were positively determined by reverse transcription assay. Analyses of the intergenic spacers in the clusters showed that, in addition to a very high AT content, the processing signals in rice snoRNA polycistronic transcripts might be different from those of yeast. Our results demonstrate that, in both plants and mammals, numerous snoRNAs can be produced simultaneously from an mRNA precursor of a host gene despite the different arrangements. The intronic snoRNA gene cluster is a novel gene organization, which is so far unique to plants. The conservation of intronic snoRNA gene clusters in plants was further demonstrated by the study of a similar snoRNA gene organization in the first intron of a Hsp70 gene from wild rice and Zizania caduciflora.
引用
收藏
页码:3262 / 3272
页数:11
相关论文
共 42 条
[1]  
Bachellerie JP, 2000, RIBOSOME: STRUCTURE, FUNCTION, ANTIBIOTICS, AND CELLULAR INTERACTIONS, P191
[2]   Guiding ribose methylation of rRNA [J].
Bachellerie, JP ;
Cavaille, J .
TRENDS IN BIOCHEMICAL SCIENCES, 1997, 22 (07) :257-261
[3]   The RNA world of the nucleolus: Two major families of small RNAs defined by different box elements with related functions [J].
Balakin, AG ;
Smith, L ;
Fournier, MJ .
CELL, 1996, 86 (05) :823-834
[4]   Identification of 66 box C/D snoRNAs in Arabidopsis thaliana:: Extensive gene duplications generated multiple isoforms predicting new ribosomal RNA 2′-O-methylation sites [J].
Barneche, F ;
Gaspin, C ;
Guyot, R ;
Echeverría, M .
JOURNAL OF MOLECULAR BIOLOGY, 2001, 311 (01) :57-73
[5]  
Brown JWS, 2001, RNA, V7, P1817
[6]   Processing of the intron-encoded U16 and U18 snoRNAs: The conserved C and D boxes control both the processing reaction and the stability of the mature snoRNA [J].
Caffarelli, E ;
Fatica, A ;
Prislei, S ;
DeGregorio, E ;
Fragapane, P ;
Bozzoni, I .
EMBO JOURNAL, 1996, 15 (05) :1121-1131
[7]   Processing of fibrillarin-associated snoRNAs from pre-mRNA introns: An exonucleolytic process exclusively directed by the common stem-box terminal structure [J].
Cavaille, J ;
Bachellerie, JP .
BIOCHIMIE, 1996, 78 (06) :443-456
[8]   SINGLE-STEP METHOD OF RNA ISOLATION BY ACID GUANIDINIUM THIOCYANATE PHENOL CHLOROFORM EXTRACTION [J].
CHOMCZYNSKI, P ;
SACCHI, N .
ANALYTICAL BIOCHEMISTRY, 1987, 162 (01) :156-159
[9]   A guided tour: small RNA function in Archaea [J].
Dennis, PP ;
Omer, A ;
Lowe, T .
MOLECULAR MICROBIOLOGY, 2001, 40 (03) :509-519
[10]  
EICHLER DC, 1994, PROG NUCLEIC ACID RE, V49, P197