White organic light-emitting diodes with fluorescent tube efficiency

被引:3135
作者
Reineke, Sebastian [1 ]
Lindner, Frank [1 ]
Schwartz, Gregor [1 ]
Seidler, Nico [1 ]
Walzer, Karsten [1 ]
Luessem, Bjoern [1 ]
Leo, Karl [1 ]
机构
[1] Inst Angew Photophys, D-01062 Dresden, Germany
关键词
TRIPLET EXCITONS; DEVICES; EMISSION; CARRIER; LAYERS;
D O I
10.1038/nature08003
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The development of white organic light-emitting diodes(1) (OLEDs) holds great promise for the production of highly efficient large-area light sources. High internal quantum efficiencies for the conversion of electrical energy to light have been realized(2-4). Nevertheless, the overall device power efficiencies are still considerably below the 60-70 lumens per watt of fluorescent tubes, which is the current benchmark for novel light sources. Although some reports about highly power-efficient white OLEDs exist(5,6), details about structure and the measurement conditions of these structures have not been fully disclosed: the highest power efficiency reported in the scientific literature is 44 lm W-1 (ref. 7). Here we report an improved OLED structure which reaches fluorescent tube efficiency. By combining a carefully chosen emitter layer with high-refractive-index substrates(8,9), and using a periodic outcoupling structure, we achieve a device power efficiency of 90 lm W-1 at 1,000 candelas per square metre. This efficiency has the potential to be raised to 124 lm W-1 if the light outcoupling can be further improved. Besides approaching internal quantum efficiency values of one, we have also focused on reducing energetic and ohmic losses that occur during electron-photon conversion. We anticipate that our results will be a starting point for further research, leading to white OLEDs having efficiencies beyond 100 lm W-1. This could make white-light OLEDs, with their soft area light and high colour-rendering qualities, the light sources of choice for the future.
引用
收藏
页码:234 / U116
页数:6
相关论文
共 29 条
[1]   New charge-carrier blocking materials for high efficiency OLEDs [J].
Adamovich, VI ;
Cordero, SR ;
Djurovich, PI ;
Tamayo, A ;
Thompson, ME ;
D'Andrade, BW ;
Forrest, SR .
ORGANIC ELECTRONICS, 2003, 4 (2-3) :77-87
[2]   Transient analysis of organic electrophosphorescence. II. Transient analysis of triplet-triplet annihilation [J].
Baldo, MA ;
Adachi, C ;
Forrest, SR .
PHYSICAL REVIEW B, 2000, 62 (16) :10967-10977
[3]   Highly efficient phosphorescent emission from organic electroluminescent devices [J].
Baldo, MA ;
O'Brien, DF ;
You, Y ;
Shoustikov, A ;
Sibley, S ;
Thompson, ME ;
Forrest, SR .
NATURE, 1998, 395 (6698) :151-154
[4]   Efficient organic electrophosphorescent white-light-emitting device with a triple doped emissive layer [J].
D'Andrade, BW ;
Holmes, RJ ;
Forrest, SR .
ADVANCED MATERIALS, 2004, 16 (07) :624-+
[5]  
DANDRADE BW, 2008, P SPIE, V7051
[6]  
GARTNER G, 2008, P SPIE, V6999
[7]   Triplet exciton confinement and unconfinement by adjacent hole-transport layers [J].
Goushi, K ;
Kwong, R ;
Brown, JJ ;
Sasabe, H ;
Adachi, C .
JOURNAL OF APPLIED PHYSICS, 2004, 95 (12) :7798-7802
[8]   ANGULAR-DEPENDENCE OF THE EMISSION FROM A CONJUGATED POLYMER LIGHT-EMITTING DIODE - IMPLICATIONS FOR EFFICIENCY CALCULATIONS [J].
GREENHAM, NC ;
FRIEND, RH ;
BRADLEY, DDC .
ADVANCED MATERIALS, 1994, 6 (06) :491-494
[9]   MEASUREMENT OF ABSOLUTE PHOTOLUMINESCENCE QUANTUM EFFICIENCIES IN CONJUGATED POLYMERS [J].
GREENHAM, NC ;
SAMUEL, IDW ;
HAYES, GR ;
PHILLIPS, RT ;
KESSENER, YARR ;
MORATTI, SC ;
HOLMES, AB ;
FRIEND, RH .
CHEMICAL PHYSICS LETTERS, 1995, 241 (1-2) :89-96
[10]   High-efficiency and low-voltage p-i-n electrophosphorescent organic light-emitting diodes with double-emission layers [J].
He, GF ;
Pfeiffer, M ;
Leo, K ;
Hofmann, M ;
Birnstock, J ;
Pudzich, R ;
Salbeck, J .
APPLIED PHYSICS LETTERS, 2004, 85 (17) :3911-3913