Reversible measure-preserving integrators for non-Hamiltonian systems

被引:24
作者
Ezra, Gregory S. [1 ]
机构
[1] Cornell Univ, Baker Lab, Dept Chem & Chem Biol, Ithaca, NY 14853 USA
关键词
D O I
10.1063/1.2215608
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We present a systematic method for deriving reversible measure-preserving integrators for non-Hamiltonian systems such as the Nose-Hoover thermostat and generalized Gaussian moment thermostat (GGMT). Our approach exploits the (non-Poisson) bracket structure underlying the thermostat equations of motion. Numerical implementation for the GGMT system shows that our algorithm accurately conserves the thermostat energy function. We also study position and momentum distribution functions obtained using our integrator. (c) 2006 American Institute of Physics.
引用
收藏
页数:14
相关论文
共 74 条
[1]  
ABRAHAM R, 1988, MANIFOLDS TRENSOR AN
[2]  
Abraham R., 1978, Foundations of mechanics
[3]   MOLECULAR-DYNAMICS SIMULATIONS AT CONSTANT PRESSURE AND-OR TEMPERATURE [J].
ANDERSEN, HC .
JOURNAL OF CHEMICAL PHYSICS, 1980, 72 (04) :2384-2393
[4]   THE RATE OF ENTROPY CHANGE IN NON-HAMILTONIAN SYSTEMS [J].
ANDREY, L .
PHYSICS LETTERS A, 1985, 111 (1-2) :45-46
[5]   NOTE CONCERNING THE PAPER THE RATE OF ENTROPY CHANGE IN NON-HAMILTONIAN SYSTEMS [J].
ANDREY, L .
PHYSICS LETTERS A, 1986, 114 (04) :183-184
[6]  
Arnold V. I., 1978, Mathematical methods of classical mechanics
[7]   The Nose-Poincare method for constant temperature molecular dynamics [J].
Bond, SD ;
Leimkuhler, BJ ;
Laird, BB .
JOURNAL OF COMPUTATIONAL PHYSICS, 1999, 151 (01) :114-134
[8]  
Dorfman J. R., 1999, INTRO CHAOS NONEQUIL
[9]  
Dubrovin B.A., 1992, Modern Geometry-Methods and Applications., DOI DOI 10.1007/978-1-4612-4398-4
[10]  
ERGI A, 2001, PHYS REV E, V64